slight update
This commit is contained in:
871
env/lib/python3.12/site-packages/Crypto/PublicKey/RSA.py
vendored
Normal file
871
env/lib/python3.12/site-packages/Crypto/PublicKey/RSA.py
vendored
Normal file
@ -0,0 +1,871 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# ===================================================================
|
||||
#
|
||||
# Copyright (c) 2016, Legrandin <helderijs@gmail.com>
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# 2. Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in
|
||||
# the documentation and/or other materials provided with the
|
||||
# distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
# ===================================================================
|
||||
|
||||
__all__ = ['generate', 'construct', 'import_key',
|
||||
'RsaKey', 'oid']
|
||||
|
||||
import binascii
|
||||
import struct
|
||||
|
||||
from Crypto import Random
|
||||
from Crypto.Util.py3compat import tobytes, bord, tostr
|
||||
from Crypto.Util.asn1 import DerSequence, DerNull
|
||||
from Crypto.Util.number import bytes_to_long
|
||||
|
||||
from Crypto.Math.Numbers import Integer
|
||||
from Crypto.Math.Primality import (test_probable_prime,
|
||||
generate_probable_prime, COMPOSITE)
|
||||
|
||||
from Crypto.PublicKey import (_expand_subject_public_key_info,
|
||||
_create_subject_public_key_info,
|
||||
_extract_subject_public_key_info)
|
||||
|
||||
|
||||
class RsaKey(object):
|
||||
r"""Class defining an RSA key, private or public.
|
||||
Do not instantiate directly.
|
||||
Use :func:`generate`, :func:`construct` or :func:`import_key` instead.
|
||||
|
||||
:ivar n: RSA modulus
|
||||
:vartype n: integer
|
||||
|
||||
:ivar e: RSA public exponent
|
||||
:vartype e: integer
|
||||
|
||||
:ivar d: RSA private exponent
|
||||
:vartype d: integer
|
||||
|
||||
:ivar p: First factor of the RSA modulus
|
||||
:vartype p: integer
|
||||
|
||||
:ivar q: Second factor of the RSA modulus
|
||||
:vartype q: integer
|
||||
|
||||
:ivar invp: Chinese remainder component (:math:`p^{-1} \text{mod } q`)
|
||||
:vartype invp: integer
|
||||
|
||||
:ivar invq: Chinese remainder component (:math:`q^{-1} \text{mod } p`)
|
||||
:vartype invq: integer
|
||||
|
||||
:ivar u: Same as ``invp``
|
||||
:vartype u: integer
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""Build an RSA key.
|
||||
|
||||
:Keywords:
|
||||
n : integer
|
||||
The modulus.
|
||||
e : integer
|
||||
The public exponent.
|
||||
d : integer
|
||||
The private exponent. Only required for private keys.
|
||||
p : integer
|
||||
The first factor of the modulus. Only required for private keys.
|
||||
q : integer
|
||||
The second factor of the modulus. Only required for private keys.
|
||||
u : integer
|
||||
The CRT coefficient (inverse of p modulo q). Only required for
|
||||
private keys.
|
||||
"""
|
||||
|
||||
input_set = set(kwargs.keys())
|
||||
public_set = set(('n', 'e'))
|
||||
private_set = public_set | set(('p', 'q', 'd', 'u'))
|
||||
if input_set not in (private_set, public_set):
|
||||
raise ValueError("Some RSA components are missing")
|
||||
for component, value in kwargs.items():
|
||||
setattr(self, "_" + component, value)
|
||||
if input_set == private_set:
|
||||
self._dp = self._d % (self._p - 1) # = (e⁻¹) mod (p-1)
|
||||
self._dq = self._d % (self._q - 1) # = (e⁻¹) mod (q-1)
|
||||
self._invq = None # will be computed on demand
|
||||
|
||||
@property
|
||||
def n(self):
|
||||
return int(self._n)
|
||||
|
||||
@property
|
||||
def e(self):
|
||||
return int(self._e)
|
||||
|
||||
@property
|
||||
def d(self):
|
||||
if not self.has_private():
|
||||
raise AttributeError("No private exponent available for public keys")
|
||||
return int(self._d)
|
||||
|
||||
@property
|
||||
def p(self):
|
||||
if not self.has_private():
|
||||
raise AttributeError("No CRT component 'p' available for public keys")
|
||||
return int(self._p)
|
||||
|
||||
@property
|
||||
def q(self):
|
||||
if not self.has_private():
|
||||
raise AttributeError("No CRT component 'q' available for public keys")
|
||||
return int(self._q)
|
||||
|
||||
@property
|
||||
def dp(self):
|
||||
if not self.has_private():
|
||||
raise AttributeError("No CRT component 'dp' available for public keys")
|
||||
return int(self._dp)
|
||||
|
||||
@property
|
||||
def dq(self):
|
||||
if not self.has_private():
|
||||
raise AttributeError("No CRT component 'dq' available for public keys")
|
||||
return int(self._dq)
|
||||
|
||||
@property
|
||||
def invq(self):
|
||||
if not self.has_private():
|
||||
raise AttributeError("No CRT component 'invq' available for public keys")
|
||||
if self._invq is None:
|
||||
self._invq = self._q.inverse(self._p)
|
||||
return int(self._invq)
|
||||
|
||||
@property
|
||||
def invp(self):
|
||||
return self.u
|
||||
|
||||
@property
|
||||
def u(self):
|
||||
if not self.has_private():
|
||||
raise AttributeError("No CRT component 'u' available for public keys")
|
||||
return int(self._u)
|
||||
|
||||
def size_in_bits(self):
|
||||
"""Size of the RSA modulus in bits"""
|
||||
return self._n.size_in_bits()
|
||||
|
||||
def size_in_bytes(self):
|
||||
"""The minimal amount of bytes that can hold the RSA modulus"""
|
||||
return (self._n.size_in_bits() - 1) // 8 + 1
|
||||
|
||||
def _encrypt(self, plaintext):
|
||||
if not 0 <= plaintext < self._n:
|
||||
raise ValueError("Plaintext too large")
|
||||
return int(pow(Integer(plaintext), self._e, self._n))
|
||||
|
||||
def _decrypt_to_bytes(self, ciphertext):
|
||||
if not 0 <= ciphertext < self._n:
|
||||
raise ValueError("Ciphertext too large")
|
||||
if not self.has_private():
|
||||
raise TypeError("This is not a private key")
|
||||
|
||||
# Blinded RSA decryption (to prevent timing attacks):
|
||||
# Step 1: Generate random secret blinding factor r,
|
||||
# such that 0 < r < n-1
|
||||
r = Integer.random_range(min_inclusive=1, max_exclusive=self._n)
|
||||
# Step 2: Compute c' = c * r**e mod n
|
||||
cp = Integer(ciphertext) * pow(r, self._e, self._n) % self._n
|
||||
# Step 3: Compute m' = c'**d mod n (normal RSA decryption)
|
||||
m1 = pow(cp, self._dp, self._p)
|
||||
m2 = pow(cp, self._dq, self._q)
|
||||
h = ((m2 - m1) * self._u) % self._q
|
||||
mp = h * self._p + m1
|
||||
# Step 4: Compute m = m' * (r**(-1)) mod n
|
||||
# then encode into a big endian byte string
|
||||
result = Integer._mult_modulo_bytes(
|
||||
r.inverse(self._n),
|
||||
mp,
|
||||
self._n)
|
||||
return result
|
||||
|
||||
def _decrypt(self, ciphertext):
|
||||
"""Legacy private method"""
|
||||
|
||||
return bytes_to_long(self._decrypt_to_bytes(ciphertext))
|
||||
|
||||
def has_private(self):
|
||||
"""Whether this is an RSA private key"""
|
||||
|
||||
return hasattr(self, "_d")
|
||||
|
||||
def can_encrypt(self): # legacy
|
||||
return True
|
||||
|
||||
def can_sign(self): # legacy
|
||||
return True
|
||||
|
||||
def public_key(self):
|
||||
"""A matching RSA public key.
|
||||
|
||||
Returns:
|
||||
a new :class:`RsaKey` object
|
||||
"""
|
||||
return RsaKey(n=self._n, e=self._e)
|
||||
|
||||
def __eq__(self, other):
|
||||
if self.has_private() != other.has_private():
|
||||
return False
|
||||
if self.n != other.n or self.e != other.e:
|
||||
return False
|
||||
if not self.has_private():
|
||||
return True
|
||||
return (self.d == other.d)
|
||||
|
||||
def __ne__(self, other):
|
||||
return not (self == other)
|
||||
|
||||
def __getstate__(self):
|
||||
# RSA key is not pickable
|
||||
from pickle import PicklingError
|
||||
raise PicklingError
|
||||
|
||||
def __repr__(self):
|
||||
if self.has_private():
|
||||
extra = ", d=%d, p=%d, q=%d, u=%d" % (int(self._d), int(self._p),
|
||||
int(self._q), int(self._u))
|
||||
else:
|
||||
extra = ""
|
||||
return "RsaKey(n=%d, e=%d%s)" % (int(self._n), int(self._e), extra)
|
||||
|
||||
def __str__(self):
|
||||
if self.has_private():
|
||||
key_type = "Private"
|
||||
else:
|
||||
key_type = "Public"
|
||||
return "%s RSA key at 0x%X" % (key_type, id(self))
|
||||
|
||||
def export_key(self, format='PEM', passphrase=None, pkcs=1,
|
||||
protection=None, randfunc=None, prot_params=None):
|
||||
"""Export this RSA key.
|
||||
|
||||
Keyword Args:
|
||||
format (string):
|
||||
The desired output format:
|
||||
|
||||
- ``'PEM'``. (default) Text output, according to `RFC1421`_/`RFC1423`_.
|
||||
- ``'DER'``. Binary output.
|
||||
- ``'OpenSSH'``. Text output, according to the OpenSSH specification.
|
||||
Only suitable for public keys (not private keys).
|
||||
|
||||
Note that PEM contains a DER structure.
|
||||
|
||||
passphrase (bytes or string):
|
||||
(*Private keys only*) The passphrase to protect the
|
||||
private key.
|
||||
|
||||
pkcs (integer):
|
||||
(*Private keys only*) The standard to use for
|
||||
serializing the key: PKCS#1 or PKCS#8.
|
||||
|
||||
With ``pkcs=1`` (*default*), the private key is encoded with a
|
||||
simple `PKCS#1`_ structure (``RSAPrivateKey``). The key cannot be
|
||||
securely encrypted.
|
||||
|
||||
With ``pkcs=8``, the private key is encoded with a `PKCS#8`_ structure
|
||||
(``PrivateKeyInfo``). PKCS#8 offers the best ways to securely
|
||||
encrypt the key.
|
||||
|
||||
.. note::
|
||||
This parameter is ignored for a public key.
|
||||
For DER and PEM, the output is always an
|
||||
ASN.1 DER ``SubjectPublicKeyInfo`` structure.
|
||||
|
||||
protection (string):
|
||||
(*For private keys only*)
|
||||
The encryption scheme to use for protecting the private key
|
||||
using the passphrase.
|
||||
|
||||
You can only specify a value if ``pkcs=8``.
|
||||
For all possible protection schemes,
|
||||
refer to :ref:`the encryption parameters of PKCS#8<enc_params>`.
|
||||
The recommended value is
|
||||
``'PBKDF2WithHMAC-SHA512AndAES256-CBC'``.
|
||||
|
||||
If ``None`` (default), the behavior depends on :attr:`format`:
|
||||
|
||||
- if ``format='PEM'``, the obsolete PEM encryption scheme is used.
|
||||
It is based on MD5 for key derivation, and 3DES for encryption.
|
||||
|
||||
- if ``format='DER'``, the ``'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC'``
|
||||
scheme is used.
|
||||
|
||||
prot_params (dict):
|
||||
(*For private keys only*)
|
||||
|
||||
The parameters to use to derive the encryption key
|
||||
from the passphrase. ``'protection'`` must be also specified.
|
||||
For all possible values,
|
||||
refer to :ref:`the encryption parameters of PKCS#8<enc_params>`.
|
||||
The recommendation is to use ``{'iteration_count':21000}`` for PBKDF2,
|
||||
and ``{'iteration_count':131072}`` for scrypt.
|
||||
|
||||
randfunc (callable):
|
||||
A function that provides random bytes. Only used for PEM encoding.
|
||||
The default is :func:`Crypto.Random.get_random_bytes`.
|
||||
|
||||
Returns:
|
||||
bytes: the encoded key
|
||||
|
||||
Raises:
|
||||
ValueError:when the format is unknown or when you try to encrypt a private
|
||||
key with *DER* format and PKCS#1.
|
||||
|
||||
.. warning::
|
||||
If you don't provide a pass phrase, the private key will be
|
||||
exported in the clear!
|
||||
|
||||
.. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
|
||||
.. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
|
||||
.. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
|
||||
.. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
|
||||
"""
|
||||
|
||||
if passphrase is not None:
|
||||
passphrase = tobytes(passphrase)
|
||||
|
||||
if randfunc is None:
|
||||
randfunc = Random.get_random_bytes
|
||||
|
||||
if format == 'OpenSSH':
|
||||
e_bytes, n_bytes = [x.to_bytes() for x in (self._e, self._n)]
|
||||
if bord(e_bytes[0]) & 0x80:
|
||||
e_bytes = b'\x00' + e_bytes
|
||||
if bord(n_bytes[0]) & 0x80:
|
||||
n_bytes = b'\x00' + n_bytes
|
||||
keyparts = [b'ssh-rsa', e_bytes, n_bytes]
|
||||
keystring = b''.join([struct.pack(">I", len(kp)) + kp for kp in keyparts])
|
||||
return b'ssh-rsa ' + binascii.b2a_base64(keystring)[:-1]
|
||||
|
||||
# DER format is always used, even in case of PEM, which simply
|
||||
# encodes it into BASE64.
|
||||
if self.has_private():
|
||||
binary_key = DerSequence([0,
|
||||
self.n,
|
||||
self.e,
|
||||
self.d,
|
||||
self.p,
|
||||
self.q,
|
||||
self.d % (self.p-1),
|
||||
self.d % (self.q-1),
|
||||
Integer(self.q).inverse(self.p)
|
||||
]).encode()
|
||||
if pkcs == 1:
|
||||
key_type = 'RSA PRIVATE KEY'
|
||||
if format == 'DER' and passphrase:
|
||||
raise ValueError("PKCS#1 private key cannot be encrypted")
|
||||
else: # PKCS#8
|
||||
from Crypto.IO import PKCS8
|
||||
|
||||
if format == 'PEM' and protection is None:
|
||||
key_type = 'PRIVATE KEY'
|
||||
binary_key = PKCS8.wrap(binary_key, oid, None,
|
||||
key_params=DerNull())
|
||||
else:
|
||||
key_type = 'ENCRYPTED PRIVATE KEY'
|
||||
if not protection:
|
||||
if prot_params:
|
||||
raise ValueError("'protection' parameter must be set")
|
||||
protection = 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC'
|
||||
binary_key = PKCS8.wrap(binary_key, oid,
|
||||
passphrase, protection,
|
||||
prot_params=prot_params,
|
||||
key_params=DerNull())
|
||||
passphrase = None
|
||||
else:
|
||||
key_type = "PUBLIC KEY"
|
||||
binary_key = _create_subject_public_key_info(oid,
|
||||
DerSequence([self.n,
|
||||
self.e]),
|
||||
DerNull()
|
||||
)
|
||||
|
||||
if format == 'DER':
|
||||
return binary_key
|
||||
if format == 'PEM':
|
||||
from Crypto.IO import PEM
|
||||
|
||||
pem_str = PEM.encode(binary_key, key_type, passphrase, randfunc)
|
||||
return tobytes(pem_str)
|
||||
|
||||
raise ValueError("Unknown key format '%s'. Cannot export the RSA key." % format)
|
||||
|
||||
# Backward compatibility
|
||||
def exportKey(self, *args, **kwargs):
|
||||
""":meta private:"""
|
||||
return self.export_key(*args, **kwargs)
|
||||
|
||||
def publickey(self):
|
||||
""":meta private:"""
|
||||
return self.public_key()
|
||||
|
||||
# Methods defined in PyCrypto that we don't support anymore
|
||||
def sign(self, M, K):
|
||||
""":meta private:"""
|
||||
raise NotImplementedError("Use module Crypto.Signature.pkcs1_15 instead")
|
||||
|
||||
def verify(self, M, signature):
|
||||
""":meta private:"""
|
||||
raise NotImplementedError("Use module Crypto.Signature.pkcs1_15 instead")
|
||||
|
||||
def encrypt(self, plaintext, K):
|
||||
""":meta private:"""
|
||||
raise NotImplementedError("Use module Crypto.Cipher.PKCS1_OAEP instead")
|
||||
|
||||
def decrypt(self, ciphertext):
|
||||
""":meta private:"""
|
||||
raise NotImplementedError("Use module Crypto.Cipher.PKCS1_OAEP instead")
|
||||
|
||||
def blind(self, M, B):
|
||||
""":meta private:"""
|
||||
raise NotImplementedError
|
||||
|
||||
def unblind(self, M, B):
|
||||
""":meta private:"""
|
||||
raise NotImplementedError
|
||||
|
||||
def size(self):
|
||||
""":meta private:"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def generate(bits, randfunc=None, e=65537):
|
||||
"""Create a new RSA key pair.
|
||||
|
||||
The algorithm closely follows NIST `FIPS 186-4`_ in its
|
||||
sections B.3.1 and B.3.3. The modulus is the product of
|
||||
two non-strong probable primes.
|
||||
Each prime passes a suitable number of Miller-Rabin tests
|
||||
with random bases and a single Lucas test.
|
||||
|
||||
Args:
|
||||
bits (integer):
|
||||
Key length, or size (in bits) of the RSA modulus.
|
||||
It must be at least 1024, but **2048 is recommended.**
|
||||
The FIPS standard only defines 1024, 2048 and 3072.
|
||||
Keyword Args:
|
||||
randfunc (callable):
|
||||
Function that returns random bytes.
|
||||
The default is :func:`Crypto.Random.get_random_bytes`.
|
||||
e (integer):
|
||||
Public RSA exponent. It must be an odd positive integer.
|
||||
It is typically a small number with very few ones in its
|
||||
binary representation.
|
||||
The FIPS standard requires the public exponent to be
|
||||
at least 65537 (the default).
|
||||
|
||||
Returns: an RSA key object (:class:`RsaKey`, with private key).
|
||||
|
||||
.. _FIPS 186-4: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
|
||||
"""
|
||||
|
||||
if bits < 1024:
|
||||
raise ValueError("RSA modulus length must be >= 1024")
|
||||
if e % 2 == 0 or e < 3:
|
||||
raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.")
|
||||
|
||||
if randfunc is None:
|
||||
randfunc = Random.get_random_bytes
|
||||
|
||||
d = n = Integer(1)
|
||||
e = Integer(e)
|
||||
|
||||
while n.size_in_bits() != bits and d < (1 << (bits // 2)):
|
||||
# Generate the prime factors of n: p and q.
|
||||
# By construciton, their product is always
|
||||
# 2^{bits-1} < p*q < 2^bits.
|
||||
size_q = bits // 2
|
||||
size_p = bits - size_q
|
||||
|
||||
min_p = min_q = (Integer(1) << (2 * size_q - 1)).sqrt()
|
||||
if size_q != size_p:
|
||||
min_p = (Integer(1) << (2 * size_p - 1)).sqrt()
|
||||
|
||||
def filter_p(candidate):
|
||||
return candidate > min_p and (candidate - 1).gcd(e) == 1
|
||||
|
||||
p = generate_probable_prime(exact_bits=size_p,
|
||||
randfunc=randfunc,
|
||||
prime_filter=filter_p)
|
||||
|
||||
min_distance = Integer(1) << (bits // 2 - 100)
|
||||
|
||||
def filter_q(candidate):
|
||||
return (candidate > min_q and
|
||||
(candidate - 1).gcd(e) == 1 and
|
||||
abs(candidate - p) > min_distance)
|
||||
|
||||
q = generate_probable_prime(exact_bits=size_q,
|
||||
randfunc=randfunc,
|
||||
prime_filter=filter_q)
|
||||
|
||||
n = p * q
|
||||
lcm = (p - 1).lcm(q - 1)
|
||||
d = e.inverse(lcm)
|
||||
|
||||
if p > q:
|
||||
p, q = q, p
|
||||
|
||||
u = p.inverse(q)
|
||||
|
||||
return RsaKey(n=n, e=e, d=d, p=p, q=q, u=u)
|
||||
|
||||
|
||||
def construct(rsa_components, consistency_check=True):
|
||||
r"""Construct an RSA key from a tuple of valid RSA components.
|
||||
|
||||
The modulus **n** must be the product of two primes.
|
||||
The public exponent **e** must be odd and larger than 1.
|
||||
|
||||
In case of a private key, the following equations must apply:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{align}
|
||||
p*q &= n \\
|
||||
e*d &\equiv 1 ( \text{mod lcm} [(p-1)(q-1)]) \\
|
||||
p*u &\equiv 1 ( \text{mod } q)
|
||||
\end{align}
|
||||
|
||||
Args:
|
||||
rsa_components (tuple):
|
||||
A tuple of integers, with at least 2 and no
|
||||
more than 6 items. The items come in the following order:
|
||||
|
||||
1. RSA modulus *n*.
|
||||
2. Public exponent *e*.
|
||||
3. Private exponent *d*.
|
||||
Only required if the key is private.
|
||||
4. First factor of *n* (*p*).
|
||||
Optional, but the other factor *q* must also be present.
|
||||
5. Second factor of *n* (*q*). Optional.
|
||||
6. CRT coefficient *q*, that is :math:`p^{-1} \text{mod }q`. Optional.
|
||||
|
||||
Keyword Args:
|
||||
consistency_check (boolean):
|
||||
If ``True``, the library will verify that the provided components
|
||||
fulfil the main RSA properties.
|
||||
|
||||
Raises:
|
||||
ValueError: when the key being imported fails the most basic RSA validity checks.
|
||||
|
||||
Returns: An RSA key object (:class:`RsaKey`).
|
||||
"""
|
||||
|
||||
class InputComps(object):
|
||||
pass
|
||||
|
||||
input_comps = InputComps()
|
||||
for (comp, value) in zip(('n', 'e', 'd', 'p', 'q', 'u'), rsa_components):
|
||||
setattr(input_comps, comp, Integer(value))
|
||||
|
||||
n = input_comps.n
|
||||
e = input_comps.e
|
||||
if not hasattr(input_comps, 'd'):
|
||||
key = RsaKey(n=n, e=e)
|
||||
else:
|
||||
d = input_comps.d
|
||||
if hasattr(input_comps, 'q'):
|
||||
p = input_comps.p
|
||||
q = input_comps.q
|
||||
else:
|
||||
# Compute factors p and q from the private exponent d.
|
||||
# We assume that n has no more than two factors.
|
||||
# See 8.2.2(i) in Handbook of Applied Cryptography.
|
||||
ktot = d * e - 1
|
||||
# The quantity d*e-1 is a multiple of phi(n), even,
|
||||
# and can be represented as t*2^s.
|
||||
t = ktot
|
||||
while t % 2 == 0:
|
||||
t //= 2
|
||||
# Cycle through all multiplicative inverses in Zn.
|
||||
# The algorithm is non-deterministic, but there is a 50% chance
|
||||
# any candidate a leads to successful factoring.
|
||||
# See "Digitalized Signatures and Public Key Functions as Intractable
|
||||
# as Factorization", M. Rabin, 1979
|
||||
spotted = False
|
||||
a = Integer(2)
|
||||
while not spotted and a < 100:
|
||||
k = Integer(t)
|
||||
# Cycle through all values a^{t*2^i}=a^k
|
||||
while k < ktot:
|
||||
cand = pow(a, k, n)
|
||||
# Check if a^k is a non-trivial root of unity (mod n)
|
||||
if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1:
|
||||
# We have found a number such that (cand-1)(cand+1)=0 (mod n).
|
||||
# Either of the terms divides n.
|
||||
p = Integer(n).gcd(cand + 1)
|
||||
spotted = True
|
||||
break
|
||||
k *= 2
|
||||
# This value was not any good... let's try another!
|
||||
a += 2
|
||||
if not spotted:
|
||||
raise ValueError("Unable to compute factors p and q from exponent d.")
|
||||
# Found !
|
||||
assert ((n % p) == 0)
|
||||
q = n // p
|
||||
|
||||
if hasattr(input_comps, 'u'):
|
||||
u = input_comps.u
|
||||
else:
|
||||
u = p.inverse(q)
|
||||
|
||||
# Build key object
|
||||
key = RsaKey(n=n, e=e, d=d, p=p, q=q, u=u)
|
||||
|
||||
# Verify consistency of the key
|
||||
if consistency_check:
|
||||
|
||||
# Modulus and public exponent must be coprime
|
||||
if e <= 1 or e >= n:
|
||||
raise ValueError("Invalid RSA public exponent")
|
||||
if Integer(n).gcd(e) != 1:
|
||||
raise ValueError("RSA public exponent is not coprime to modulus")
|
||||
|
||||
# For RSA, modulus must be odd
|
||||
if not n & 1:
|
||||
raise ValueError("RSA modulus is not odd")
|
||||
|
||||
if key.has_private():
|
||||
# Modulus and private exponent must be coprime
|
||||
if d <= 1 or d >= n:
|
||||
raise ValueError("Invalid RSA private exponent")
|
||||
if Integer(n).gcd(d) != 1:
|
||||
raise ValueError("RSA private exponent is not coprime to modulus")
|
||||
# Modulus must be product of 2 primes
|
||||
if p * q != n:
|
||||
raise ValueError("RSA factors do not match modulus")
|
||||
if test_probable_prime(p) == COMPOSITE:
|
||||
raise ValueError("RSA factor p is composite")
|
||||
if test_probable_prime(q) == COMPOSITE:
|
||||
raise ValueError("RSA factor q is composite")
|
||||
# See Carmichael theorem
|
||||
phi = (p - 1) * (q - 1)
|
||||
lcm = phi // (p - 1).gcd(q - 1)
|
||||
if (e * d % int(lcm)) != 1:
|
||||
raise ValueError("Invalid RSA condition")
|
||||
if hasattr(key, 'u'):
|
||||
# CRT coefficient
|
||||
if u <= 1 or u >= q:
|
||||
raise ValueError("Invalid RSA component u")
|
||||
if (p * u % q) != 1:
|
||||
raise ValueError("Invalid RSA component u with p")
|
||||
|
||||
return key
|
||||
|
||||
|
||||
def _import_pkcs1_private(encoded, *kwargs):
|
||||
# RSAPrivateKey ::= SEQUENCE {
|
||||
# version Version,
|
||||
# modulus INTEGER, -- n
|
||||
# publicExponent INTEGER, -- e
|
||||
# privateExponent INTEGER, -- d
|
||||
# prime1 INTEGER, -- p
|
||||
# prime2 INTEGER, -- q
|
||||
# exponent1 INTEGER, -- d mod (p-1)
|
||||
# exponent2 INTEGER, -- d mod (q-1)
|
||||
# coefficient INTEGER -- (inverse of q) mod p
|
||||
# }
|
||||
#
|
||||
# Version ::= INTEGER
|
||||
der = DerSequence().decode(encoded, nr_elements=9, only_ints_expected=True)
|
||||
if der[0] != 0:
|
||||
raise ValueError("No PKCS#1 encoding of an RSA private key")
|
||||
return construct(der[1:6] + [Integer(der[4]).inverse(der[5])])
|
||||
|
||||
|
||||
def _import_pkcs1_public(encoded, *kwargs):
|
||||
# RSAPublicKey ::= SEQUENCE {
|
||||
# modulus INTEGER, -- n
|
||||
# publicExponent INTEGER -- e
|
||||
# }
|
||||
der = DerSequence().decode(encoded, nr_elements=2, only_ints_expected=True)
|
||||
return construct(der)
|
||||
|
||||
|
||||
def _import_subjectPublicKeyInfo(encoded, *kwargs):
|
||||
|
||||
oids = (oid, "1.2.840.113549.1.1.10")
|
||||
|
||||
algoid, encoded_key, params = _expand_subject_public_key_info(encoded)
|
||||
if algoid not in oids or params is not None:
|
||||
raise ValueError("No RSA subjectPublicKeyInfo")
|
||||
return _import_pkcs1_public(encoded_key)
|
||||
|
||||
|
||||
def _import_x509_cert(encoded, *kwargs):
|
||||
|
||||
sp_info = _extract_subject_public_key_info(encoded)
|
||||
return _import_subjectPublicKeyInfo(sp_info)
|
||||
|
||||
|
||||
def _import_pkcs8(encoded, passphrase):
|
||||
from Crypto.IO import PKCS8
|
||||
|
||||
oids = (oid, "1.2.840.113549.1.1.10")
|
||||
|
||||
k = PKCS8.unwrap(encoded, passphrase)
|
||||
if k[0] not in oids:
|
||||
raise ValueError("No PKCS#8 encoded RSA key")
|
||||
return _import_keyDER(k[1], passphrase)
|
||||
|
||||
|
||||
def _import_keyDER(extern_key, passphrase):
|
||||
"""Import an RSA key (public or private half), encoded in DER form."""
|
||||
|
||||
decodings = (_import_pkcs1_private,
|
||||
_import_pkcs1_public,
|
||||
_import_subjectPublicKeyInfo,
|
||||
_import_x509_cert,
|
||||
_import_pkcs8)
|
||||
|
||||
for decoding in decodings:
|
||||
try:
|
||||
return decoding(extern_key, passphrase)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
raise ValueError("RSA key format is not supported")
|
||||
|
||||
|
||||
def _import_openssh_private_rsa(data, password):
|
||||
|
||||
from ._openssh import (import_openssh_private_generic,
|
||||
read_bytes, read_string, check_padding)
|
||||
|
||||
ssh_name, decrypted = import_openssh_private_generic(data, password)
|
||||
|
||||
if ssh_name != "ssh-rsa":
|
||||
raise ValueError("This SSH key is not RSA")
|
||||
|
||||
n, decrypted = read_bytes(decrypted)
|
||||
e, decrypted = read_bytes(decrypted)
|
||||
d, decrypted = read_bytes(decrypted)
|
||||
iqmp, decrypted = read_bytes(decrypted)
|
||||
p, decrypted = read_bytes(decrypted)
|
||||
q, decrypted = read_bytes(decrypted)
|
||||
|
||||
_, padded = read_string(decrypted) # Comment
|
||||
check_padding(padded)
|
||||
|
||||
build = [Integer.from_bytes(x) for x in (n, e, d, q, p, iqmp)]
|
||||
return construct(build)
|
||||
|
||||
|
||||
def import_key(extern_key, passphrase=None):
|
||||
"""Import an RSA key (public or private).
|
||||
|
||||
Args:
|
||||
extern_key (string or byte string):
|
||||
The RSA key to import.
|
||||
|
||||
The following formats are supported for an RSA **public key**:
|
||||
|
||||
- X.509 certificate (binary or PEM format)
|
||||
- X.509 ``subjectPublicKeyInfo`` DER SEQUENCE (binary or PEM
|
||||
encoding)
|
||||
- `PKCS#1`_ ``RSAPublicKey`` DER SEQUENCE (binary or PEM encoding)
|
||||
- An OpenSSH line (e.g. the content of ``~/.ssh/id_ecdsa``, ASCII)
|
||||
|
||||
The following formats are supported for an RSA **private key**:
|
||||
|
||||
- PKCS#1 ``RSAPrivateKey`` DER SEQUENCE (binary or PEM encoding)
|
||||
- `PKCS#8`_ ``PrivateKeyInfo`` or ``EncryptedPrivateKeyInfo``
|
||||
DER SEQUENCE (binary or PEM encoding)
|
||||
- OpenSSH (text format, introduced in `OpenSSH 6.5`_)
|
||||
|
||||
For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.
|
||||
|
||||
passphrase (string or byte string):
|
||||
For private keys only, the pass phrase that encrypts the key.
|
||||
|
||||
Returns: An RSA key object (:class:`RsaKey`).
|
||||
|
||||
Raises:
|
||||
ValueError/IndexError/TypeError:
|
||||
When the given key cannot be parsed (possibly because the pass
|
||||
phrase is wrong).
|
||||
|
||||
.. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
|
||||
.. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
|
||||
.. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt
|
||||
.. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
|
||||
.. _`OpenSSH 6.5`: https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf
|
||||
"""
|
||||
|
||||
from Crypto.IO import PEM
|
||||
|
||||
extern_key = tobytes(extern_key)
|
||||
if passphrase is not None:
|
||||
passphrase = tobytes(passphrase)
|
||||
|
||||
if extern_key.startswith(b'-----BEGIN OPENSSH PRIVATE KEY'):
|
||||
text_encoded = tostr(extern_key)
|
||||
openssh_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase)
|
||||
result = _import_openssh_private_rsa(openssh_encoded, passphrase)
|
||||
return result
|
||||
|
||||
if extern_key.startswith(b'-----'):
|
||||
# This is probably a PEM encoded key.
|
||||
(der, marker, enc_flag) = PEM.decode(tostr(extern_key), passphrase)
|
||||
if enc_flag:
|
||||
passphrase = None
|
||||
return _import_keyDER(der, passphrase)
|
||||
|
||||
if extern_key.startswith(b'ssh-rsa '):
|
||||
# This is probably an OpenSSH key
|
||||
keystring = binascii.a2b_base64(extern_key.split(b' ')[1])
|
||||
keyparts = []
|
||||
while len(keystring) > 4:
|
||||
length = struct.unpack(">I", keystring[:4])[0]
|
||||
keyparts.append(keystring[4:4 + length])
|
||||
keystring = keystring[4 + length:]
|
||||
e = Integer.from_bytes(keyparts[1])
|
||||
n = Integer.from_bytes(keyparts[2])
|
||||
return construct([n, e])
|
||||
|
||||
if len(extern_key) > 0 and bord(extern_key[0]) == 0x30:
|
||||
# This is probably a DER encoded key
|
||||
return _import_keyDER(extern_key, passphrase)
|
||||
|
||||
raise ValueError("RSA key format is not supported")
|
||||
|
||||
|
||||
# Backward compatibility
|
||||
importKey = import_key
|
||||
|
||||
#: `Object ID`_ for the RSA encryption algorithm. This OID often indicates
|
||||
#: a generic RSA key, even when such key will be actually used for digital
|
||||
#: signatures.
|
||||
#:
|
||||
#: .. note:
|
||||
#: An RSA key meant for PSS padding has a dedicated Object ID ``1.2.840.113549.1.1.10``
|
||||
#:
|
||||
#: .. _`Object ID`: http://www.alvestrand.no/objectid/1.2.840.113549.1.1.1.html
|
||||
oid = "1.2.840.113549.1.1.1"
|
Reference in New Issue
Block a user