slight update
This commit is contained in:
382
env/lib/python3.12/site-packages/Crypto/Math/_IntegerNative.py
vendored
Normal file
382
env/lib/python3.12/site-packages/Crypto/Math/_IntegerNative.py
vendored
Normal file
@ -0,0 +1,382 @@
|
||||
# ===================================================================
|
||||
#
|
||||
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# 2. Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in
|
||||
# the documentation and/or other materials provided with the
|
||||
# distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
# ===================================================================
|
||||
|
||||
from ._IntegerBase import IntegerBase
|
||||
|
||||
from Crypto.Util.number import long_to_bytes, bytes_to_long, inverse, GCD
|
||||
|
||||
|
||||
class IntegerNative(IntegerBase):
|
||||
"""A class to model a natural integer (including zero)"""
|
||||
|
||||
def __init__(self, value):
|
||||
if isinstance(value, float):
|
||||
raise ValueError("A floating point type is not a natural number")
|
||||
try:
|
||||
self._value = value._value
|
||||
except AttributeError:
|
||||
self._value = value
|
||||
|
||||
# Conversions
|
||||
def __int__(self):
|
||||
return self._value
|
||||
|
||||
def __str__(self):
|
||||
return str(int(self))
|
||||
|
||||
def __repr__(self):
|
||||
return "Integer(%s)" % str(self)
|
||||
|
||||
# Only Python 2.x
|
||||
def __hex__(self):
|
||||
return hex(self._value)
|
||||
|
||||
# Only Python 3.x
|
||||
def __index__(self):
|
||||
return int(self._value)
|
||||
|
||||
def to_bytes(self, block_size=0, byteorder='big'):
|
||||
if self._value < 0:
|
||||
raise ValueError("Conversion only valid for non-negative numbers")
|
||||
result = long_to_bytes(self._value, block_size)
|
||||
if len(result) > block_size > 0:
|
||||
raise ValueError("Value too large to encode")
|
||||
if byteorder == 'big':
|
||||
pass
|
||||
elif byteorder == 'little':
|
||||
result = bytearray(result)
|
||||
result.reverse()
|
||||
result = bytes(result)
|
||||
else:
|
||||
raise ValueError("Incorrect byteorder")
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def from_bytes(cls, byte_string, byteorder='big'):
|
||||
if byteorder == 'big':
|
||||
pass
|
||||
elif byteorder == 'little':
|
||||
byte_string = bytearray(byte_string)
|
||||
byte_string.reverse()
|
||||
else:
|
||||
raise ValueError("Incorrect byteorder")
|
||||
return cls(bytes_to_long(byte_string))
|
||||
|
||||
# Relations
|
||||
def __eq__(self, term):
|
||||
if term is None:
|
||||
return False
|
||||
return self._value == int(term)
|
||||
|
||||
def __ne__(self, term):
|
||||
return not self.__eq__(term)
|
||||
|
||||
def __lt__(self, term):
|
||||
return self._value < int(term)
|
||||
|
||||
def __le__(self, term):
|
||||
return self.__lt__(term) or self.__eq__(term)
|
||||
|
||||
def __gt__(self, term):
|
||||
return not self.__le__(term)
|
||||
|
||||
def __ge__(self, term):
|
||||
return not self.__lt__(term)
|
||||
|
||||
def __nonzero__(self):
|
||||
return self._value != 0
|
||||
__bool__ = __nonzero__
|
||||
|
||||
def is_negative(self):
|
||||
return self._value < 0
|
||||
|
||||
# Arithmetic operations
|
||||
def __add__(self, term):
|
||||
try:
|
||||
return self.__class__(self._value + int(term))
|
||||
except (ValueError, AttributeError, TypeError):
|
||||
return NotImplemented
|
||||
|
||||
def __sub__(self, term):
|
||||
try:
|
||||
return self.__class__(self._value - int(term))
|
||||
except (ValueError, AttributeError, TypeError):
|
||||
return NotImplemented
|
||||
|
||||
def __mul__(self, factor):
|
||||
try:
|
||||
return self.__class__(self._value * int(factor))
|
||||
except (ValueError, AttributeError, TypeError):
|
||||
return NotImplemented
|
||||
|
||||
def __floordiv__(self, divisor):
|
||||
return self.__class__(self._value // int(divisor))
|
||||
|
||||
def __mod__(self, divisor):
|
||||
divisor_value = int(divisor)
|
||||
if divisor_value < 0:
|
||||
raise ValueError("Modulus must be positive")
|
||||
return self.__class__(self._value % divisor_value)
|
||||
|
||||
def inplace_pow(self, exponent, modulus=None):
|
||||
exp_value = int(exponent)
|
||||
if exp_value < 0:
|
||||
raise ValueError("Exponent must not be negative")
|
||||
|
||||
if modulus is not None:
|
||||
mod_value = int(modulus)
|
||||
if mod_value < 0:
|
||||
raise ValueError("Modulus must be positive")
|
||||
if mod_value == 0:
|
||||
raise ZeroDivisionError("Modulus cannot be zero")
|
||||
else:
|
||||
mod_value = None
|
||||
self._value = pow(self._value, exp_value, mod_value)
|
||||
return self
|
||||
|
||||
def __pow__(self, exponent, modulus=None):
|
||||
result = self.__class__(self)
|
||||
return result.inplace_pow(exponent, modulus)
|
||||
|
||||
def __abs__(self):
|
||||
return abs(self._value)
|
||||
|
||||
def sqrt(self, modulus=None):
|
||||
|
||||
value = self._value
|
||||
if modulus is None:
|
||||
if value < 0:
|
||||
raise ValueError("Square root of negative value")
|
||||
# http://stackoverflow.com/questions/15390807/integer-square-root-in-python
|
||||
|
||||
x = value
|
||||
y = (x + 1) // 2
|
||||
while y < x:
|
||||
x = y
|
||||
y = (x + value // x) // 2
|
||||
result = x
|
||||
else:
|
||||
if modulus <= 0:
|
||||
raise ValueError("Modulus must be positive")
|
||||
result = self._tonelli_shanks(self % modulus, modulus)
|
||||
|
||||
return self.__class__(result)
|
||||
|
||||
def __iadd__(self, term):
|
||||
self._value += int(term)
|
||||
return self
|
||||
|
||||
def __isub__(self, term):
|
||||
self._value -= int(term)
|
||||
return self
|
||||
|
||||
def __imul__(self, term):
|
||||
self._value *= int(term)
|
||||
return self
|
||||
|
||||
def __imod__(self, term):
|
||||
modulus = int(term)
|
||||
if modulus == 0:
|
||||
raise ZeroDivisionError("Division by zero")
|
||||
if modulus < 0:
|
||||
raise ValueError("Modulus must be positive")
|
||||
self._value %= modulus
|
||||
return self
|
||||
|
||||
# Boolean/bit operations
|
||||
def __and__(self, term):
|
||||
return self.__class__(self._value & int(term))
|
||||
|
||||
def __or__(self, term):
|
||||
return self.__class__(self._value | int(term))
|
||||
|
||||
def __rshift__(self, pos):
|
||||
try:
|
||||
return self.__class__(self._value >> int(pos))
|
||||
except OverflowError:
|
||||
if self._value >= 0:
|
||||
return 0
|
||||
else:
|
||||
return -1
|
||||
|
||||
def __irshift__(self, pos):
|
||||
try:
|
||||
self._value >>= int(pos)
|
||||
except OverflowError:
|
||||
if self._value >= 0:
|
||||
return 0
|
||||
else:
|
||||
return -1
|
||||
return self
|
||||
|
||||
def __lshift__(self, pos):
|
||||
try:
|
||||
return self.__class__(self._value << int(pos))
|
||||
except OverflowError:
|
||||
raise ValueError("Incorrect shift count")
|
||||
|
||||
def __ilshift__(self, pos):
|
||||
try:
|
||||
self._value <<= int(pos)
|
||||
except OverflowError:
|
||||
raise ValueError("Incorrect shift count")
|
||||
return self
|
||||
|
||||
def get_bit(self, n):
|
||||
if self._value < 0:
|
||||
raise ValueError("no bit representation for negative values")
|
||||
try:
|
||||
try:
|
||||
result = (self._value >> n._value) & 1
|
||||
if n._value < 0:
|
||||
raise ValueError("negative bit count")
|
||||
except AttributeError:
|
||||
result = (self._value >> n) & 1
|
||||
if n < 0:
|
||||
raise ValueError("negative bit count")
|
||||
except OverflowError:
|
||||
result = 0
|
||||
return result
|
||||
|
||||
# Extra
|
||||
def is_odd(self):
|
||||
return (self._value & 1) == 1
|
||||
|
||||
def is_even(self):
|
||||
return (self._value & 1) == 0
|
||||
|
||||
def size_in_bits(self):
|
||||
|
||||
if self._value < 0:
|
||||
raise ValueError("Conversion only valid for non-negative numbers")
|
||||
|
||||
if self._value == 0:
|
||||
return 1
|
||||
|
||||
return self._value.bit_length()
|
||||
|
||||
def size_in_bytes(self):
|
||||
return (self.size_in_bits() - 1) // 8 + 1
|
||||
|
||||
def is_perfect_square(self):
|
||||
if self._value < 0:
|
||||
return False
|
||||
if self._value in (0, 1):
|
||||
return True
|
||||
|
||||
x = self._value // 2
|
||||
square_x = x ** 2
|
||||
|
||||
while square_x > self._value:
|
||||
x = (square_x + self._value) // (2 * x)
|
||||
square_x = x ** 2
|
||||
|
||||
return self._value == x ** 2
|
||||
|
||||
def fail_if_divisible_by(self, small_prime):
|
||||
if (self._value % int(small_prime)) == 0:
|
||||
raise ValueError("Value is composite")
|
||||
|
||||
def multiply_accumulate(self, a, b):
|
||||
self._value += int(a) * int(b)
|
||||
return self
|
||||
|
||||
def set(self, source):
|
||||
self._value = int(source)
|
||||
|
||||
def inplace_inverse(self, modulus):
|
||||
self._value = inverse(self._value, int(modulus))
|
||||
return self
|
||||
|
||||
def inverse(self, modulus):
|
||||
result = self.__class__(self)
|
||||
result.inplace_inverse(modulus)
|
||||
return result
|
||||
|
||||
def gcd(self, term):
|
||||
return self.__class__(GCD(abs(self._value), abs(int(term))))
|
||||
|
||||
def lcm(self, term):
|
||||
term = int(term)
|
||||
if self._value == 0 or term == 0:
|
||||
return self.__class__(0)
|
||||
return self.__class__(abs((self._value * term) // self.gcd(term)._value))
|
||||
|
||||
@staticmethod
|
||||
def jacobi_symbol(a, n):
|
||||
a = int(a)
|
||||
n = int(n)
|
||||
|
||||
if n <= 0:
|
||||
raise ValueError("n must be a positive integer")
|
||||
|
||||
if (n & 1) == 0:
|
||||
raise ValueError("n must be odd for the Jacobi symbol")
|
||||
|
||||
# Step 1
|
||||
a = a % n
|
||||
# Step 2
|
||||
if a == 1 or n == 1:
|
||||
return 1
|
||||
# Step 3
|
||||
if a == 0:
|
||||
return 0
|
||||
# Step 4
|
||||
e = 0
|
||||
a1 = a
|
||||
while (a1 & 1) == 0:
|
||||
a1 >>= 1
|
||||
e += 1
|
||||
# Step 5
|
||||
if (e & 1) == 0:
|
||||
s = 1
|
||||
elif n % 8 in (1, 7):
|
||||
s = 1
|
||||
else:
|
||||
s = -1
|
||||
# Step 6
|
||||
if n % 4 == 3 and a1 % 4 == 3:
|
||||
s = -s
|
||||
# Step 7
|
||||
n1 = n % a1
|
||||
# Step 8
|
||||
return s * IntegerNative.jacobi_symbol(n1, a1)
|
||||
|
||||
@staticmethod
|
||||
def _mult_modulo_bytes(term1, term2, modulus):
|
||||
if modulus < 0:
|
||||
raise ValueError("Modulus must be positive")
|
||||
if modulus == 0:
|
||||
raise ZeroDivisionError("Modulus cannot be zero")
|
||||
if (modulus & 1) == 0:
|
||||
raise ValueError("Odd modulus is required")
|
||||
|
||||
number_len = len(long_to_bytes(modulus))
|
||||
return long_to_bytes((term1 * term2) % modulus, number_len)
|
Reference in New Issue
Block a user