slight update
This commit is contained in:
412
env/lib/python3.12/site-packages/Crypto/Math/_IntegerBase.py
vendored
Normal file
412
env/lib/python3.12/site-packages/Crypto/Math/_IntegerBase.py
vendored
Normal file
@ -0,0 +1,412 @@
|
||||
# ===================================================================
|
||||
#
|
||||
# Copyright (c) 2018, Helder Eijs <helderijs@gmail.com>
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# 2. Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in
|
||||
# the documentation and/or other materials provided with the
|
||||
# distribution.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
# ===================================================================
|
||||
|
||||
import abc
|
||||
|
||||
from Crypto.Util.py3compat import iter_range, bord, bchr, ABC
|
||||
|
||||
from Crypto import Random
|
||||
|
||||
|
||||
class IntegerBase(ABC):
|
||||
|
||||
# Conversions
|
||||
@abc.abstractmethod
|
||||
def __int__(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __str__(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __repr__(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def to_bytes(self, block_size=0, byteorder='big'):
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
@abc.abstractmethod
|
||||
def from_bytes(byte_string, byteorder='big'):
|
||||
pass
|
||||
|
||||
# Relations
|
||||
@abc.abstractmethod
|
||||
def __eq__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __ne__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __lt__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __le__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __gt__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __ge__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __nonzero__(self):
|
||||
pass
|
||||
__bool__ = __nonzero__
|
||||
|
||||
@abc.abstractmethod
|
||||
def is_negative(self):
|
||||
pass
|
||||
|
||||
# Arithmetic operations
|
||||
@abc.abstractmethod
|
||||
def __add__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __sub__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __mul__(self, factor):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __floordiv__(self, divisor):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __mod__(self, divisor):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def inplace_pow(self, exponent, modulus=None):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __pow__(self, exponent, modulus=None):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __abs__(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def sqrt(self, modulus=None):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __iadd__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __isub__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __imul__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __imod__(self, term):
|
||||
pass
|
||||
|
||||
# Boolean/bit operations
|
||||
@abc.abstractmethod
|
||||
def __and__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __or__(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __rshift__(self, pos):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __irshift__(self, pos):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __lshift__(self, pos):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def __ilshift__(self, pos):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_bit(self, n):
|
||||
pass
|
||||
|
||||
# Extra
|
||||
@abc.abstractmethod
|
||||
def is_odd(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def is_even(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def size_in_bits(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def size_in_bytes(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def is_perfect_square(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def fail_if_divisible_by(self, small_prime):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def multiply_accumulate(self, a, b):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def set(self, source):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def inplace_inverse(self, modulus):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def inverse(self, modulus):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def gcd(self, term):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def lcm(self, term):
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
@abc.abstractmethod
|
||||
def jacobi_symbol(a, n):
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def _tonelli_shanks(n, p):
|
||||
"""Tonelli-shanks algorithm for computing the square root
|
||||
of n modulo a prime p.
|
||||
|
||||
n must be in the range [0..p-1].
|
||||
p must be at least even.
|
||||
|
||||
The return value r is the square root of modulo p. If non-zero,
|
||||
another solution will also exist (p-r).
|
||||
|
||||
Note we cannot assume that p is really a prime: if it's not,
|
||||
we can either raise an exception or return the correct value.
|
||||
"""
|
||||
|
||||
# See https://rosettacode.org/wiki/Tonelli-Shanks_algorithm
|
||||
|
||||
if n in (0, 1):
|
||||
return n
|
||||
|
||||
if p % 4 == 3:
|
||||
root = pow(n, (p + 1) // 4, p)
|
||||
if pow(root, 2, p) != n:
|
||||
raise ValueError("Cannot compute square root")
|
||||
return root
|
||||
|
||||
s = 1
|
||||
q = (p - 1) // 2
|
||||
while not (q & 1):
|
||||
s += 1
|
||||
q >>= 1
|
||||
|
||||
z = n.__class__(2)
|
||||
while True:
|
||||
euler = pow(z, (p - 1) // 2, p)
|
||||
if euler == 1:
|
||||
z += 1
|
||||
continue
|
||||
if euler == p - 1:
|
||||
break
|
||||
# Most probably p is not a prime
|
||||
raise ValueError("Cannot compute square root")
|
||||
|
||||
m = s
|
||||
c = pow(z, q, p)
|
||||
t = pow(n, q, p)
|
||||
r = pow(n, (q + 1) // 2, p)
|
||||
|
||||
while t != 1:
|
||||
for i in iter_range(0, m):
|
||||
if pow(t, 2**i, p) == 1:
|
||||
break
|
||||
if i == m:
|
||||
raise ValueError("Cannot compute square root of %d mod %d" % (n, p))
|
||||
b = pow(c, 2**(m - i - 1), p)
|
||||
m = i
|
||||
c = b**2 % p
|
||||
t = (t * b**2) % p
|
||||
r = (r * b) % p
|
||||
|
||||
if pow(r, 2, p) != n:
|
||||
raise ValueError("Cannot compute square root")
|
||||
|
||||
return r
|
||||
|
||||
@classmethod
|
||||
def random(cls, **kwargs):
|
||||
"""Generate a random natural integer of a certain size.
|
||||
|
||||
:Keywords:
|
||||
exact_bits : positive integer
|
||||
The length in bits of the resulting random Integer number.
|
||||
The number is guaranteed to fulfil the relation:
|
||||
|
||||
2^bits > result >= 2^(bits - 1)
|
||||
|
||||
max_bits : positive integer
|
||||
The maximum length in bits of the resulting random Integer number.
|
||||
The number is guaranteed to fulfil the relation:
|
||||
|
||||
2^bits > result >=0
|
||||
|
||||
randfunc : callable
|
||||
A function that returns a random byte string. The length of the
|
||||
byte string is passed as parameter. Optional.
|
||||
If not provided (or ``None``), randomness is read from the system RNG.
|
||||
|
||||
:Return: a Integer object
|
||||
"""
|
||||
|
||||
exact_bits = kwargs.pop("exact_bits", None)
|
||||
max_bits = kwargs.pop("max_bits", None)
|
||||
randfunc = kwargs.pop("randfunc", None)
|
||||
|
||||
if randfunc is None:
|
||||
randfunc = Random.new().read
|
||||
|
||||
if exact_bits is None and max_bits is None:
|
||||
raise ValueError("Either 'exact_bits' or 'max_bits' must be specified")
|
||||
|
||||
if exact_bits is not None and max_bits is not None:
|
||||
raise ValueError("'exact_bits' and 'max_bits' are mutually exclusive")
|
||||
|
||||
bits = exact_bits or max_bits
|
||||
bytes_needed = ((bits - 1) // 8) + 1
|
||||
significant_bits_msb = 8 - (bytes_needed * 8 - bits)
|
||||
msb = bord(randfunc(1)[0])
|
||||
if exact_bits is not None:
|
||||
msb |= 1 << (significant_bits_msb - 1)
|
||||
msb &= (1 << significant_bits_msb) - 1
|
||||
|
||||
return cls.from_bytes(bchr(msb) + randfunc(bytes_needed - 1))
|
||||
|
||||
@classmethod
|
||||
def random_range(cls, **kwargs):
|
||||
"""Generate a random integer within a given internal.
|
||||
|
||||
:Keywords:
|
||||
min_inclusive : integer
|
||||
The lower end of the interval (inclusive).
|
||||
max_inclusive : integer
|
||||
The higher end of the interval (inclusive).
|
||||
max_exclusive : integer
|
||||
The higher end of the interval (exclusive).
|
||||
randfunc : callable
|
||||
A function that returns a random byte string. The length of the
|
||||
byte string is passed as parameter. Optional.
|
||||
If not provided (or ``None``), randomness is read from the system RNG.
|
||||
:Returns:
|
||||
An Integer randomly taken in the given interval.
|
||||
"""
|
||||
|
||||
min_inclusive = kwargs.pop("min_inclusive", None)
|
||||
max_inclusive = kwargs.pop("max_inclusive", None)
|
||||
max_exclusive = kwargs.pop("max_exclusive", None)
|
||||
randfunc = kwargs.pop("randfunc", None)
|
||||
|
||||
if kwargs:
|
||||
raise ValueError("Unknown keywords: " + str(kwargs.keys))
|
||||
if None not in (max_inclusive, max_exclusive):
|
||||
raise ValueError("max_inclusive and max_exclusive cannot be both"
|
||||
" specified")
|
||||
if max_exclusive is not None:
|
||||
max_inclusive = max_exclusive - 1
|
||||
if None in (min_inclusive, max_inclusive):
|
||||
raise ValueError("Missing keyword to identify the interval")
|
||||
|
||||
if randfunc is None:
|
||||
randfunc = Random.new().read
|
||||
|
||||
norm_maximum = max_inclusive - min_inclusive
|
||||
bits_needed = cls(norm_maximum).size_in_bits()
|
||||
|
||||
norm_candidate = -1
|
||||
while not 0 <= norm_candidate <= norm_maximum:
|
||||
norm_candidate = cls.random(
|
||||
max_bits=bits_needed,
|
||||
randfunc=randfunc
|
||||
)
|
||||
return norm_candidate + min_inclusive
|
||||
|
||||
@staticmethod
|
||||
@abc.abstractmethod
|
||||
def _mult_modulo_bytes(term1, term2, modulus):
|
||||
"""Multiply two integers, take the modulo, and encode as big endian.
|
||||
This specialized method is used for RSA decryption.
|
||||
|
||||
Args:
|
||||
term1 : integer
|
||||
The first term of the multiplication, non-negative.
|
||||
term2 : integer
|
||||
The second term of the multiplication, non-negative.
|
||||
modulus: integer
|
||||
The modulus, a positive odd number.
|
||||
:Returns:
|
||||
A byte string, with the result of the modular multiplication
|
||||
encoded in big endian mode.
|
||||
It is as long as the modulus would be, with zero padding
|
||||
on the left if needed.
|
||||
"""
|
||||
pass
|
Reference in New Issue
Block a user