udpate sick

This commit is contained in:
Dongho Kim
2025-12-22 04:33:54 +09:00
parent 136723ca24
commit 3885ddd977
16 changed files with 689 additions and 190 deletions

View File

@@ -269,12 +269,28 @@ async fn main() -> Result<()> {
if is_highway || treat_as_water_line {
// Generate road geometry
let projected_points: Vec<[f32; 2]> = simplified_points.iter()
let projected_points_raw: Vec<[f32; 2]> = simplified_points.iter()
.map(|(lat, lon)| {
let (x, y) = GeometryService::project(*lat, *lon);
[x, y]
})
.collect();
// Fix degenerate segments: Deduplicate consecutive points that are too close
let mut projected_points = Vec::with_capacity(projected_points_raw.len());
if !projected_points_raw.is_empty() {
projected_points.push(projected_points_raw[0]);
for i in 1..projected_points_raw.len() {
let prev = projected_points.last().unwrap();
let curr = projected_points_raw[i];
let dx = curr[0] - prev[0];
let dy = curr[1] - prev[1];
// 1.0e-11 is approx (3e-6)^2, which ensures we are safely above the 1e-6 degenerate threshold
if (dx * dx + dy * dy) > 1.0e-11 {
projected_points.push(curr);
}
}
}
let highway_tag = tags.get("highway").map(|s| s.as_str());
let road_type = match highway_tag.unwrap_or("") {
@@ -293,20 +309,67 @@ async fn main() -> Result<()> {
.and_then(|s| s.parse().ok())
.unwrap_or(default_lanes);
// DEBUG: Log first way to validate mesh generation
if way_count == 1 {
println!("DEBUG Way {}: {} projected points, generating mesh...", id, projected_points.len());
// DEBUG: Enable verbose logging for specific way ID via environment variable
let debug_way_id: Option<i64> = std::env::var("DEBUG_WAY_ID")
.ok()
.and_then(|s| s.parse().ok());
if debug_way_id == Some(id) {
println!("DEBUG Way {}: Processing at zoom {}", id, zoom);
println!(" - is_highway: {}", is_highway);
println!(" - treat_as_water_line: {}", treat_as_water_line);
println!(" - is_water_line: {}", is_water_line);
println!(" - is_water_area: {}", is_water_area);
println!(" - Original points: {}", points.len());
println!(" - Simplified points: {}", simplified_points.len());
println!(" - Projected points: {}", projected_points.len());
println!(" - First 5 simplified (lat/lon):");
for (i, p) in simplified_points.iter().take(5).enumerate() {
println!(" [{:2}] lat={:.8}, lon={:.8}", i, p.0, p.1);
}
println!(" - First 5 projected (x/y):");
for (i, p) in projected_points.iter().take(5).enumerate() {
println!(" [{:2}] x={:.8}, y={:.8}", i, p[0], p[1]);
}
// Check for consecutive duplicates
let mut duplicates = 0;
for i in 0..projected_points.len().saturating_sub(1) {
let p1 = projected_points[i];
let p2 = projected_points[i + 1];
let dx = p2[0] - p1[0];
let dy = p2[1] - p1[1];
let dist = (dx * dx + dy * dy).sqrt();
if dist < 0.000001 {
duplicates += 1;
if duplicates <= 3 {
println!(" DEGENERATE segment {}: dist={:.12}, p1=[{:.8},{:.8}], p2=[{:.8},{:.8}]",
i, dist, p1[0], p1[1], p2[0], p2[1]);
}
}
}
if duplicates > 0 {
println!(" - Total degenerate segments: {}/{}", duplicates, projected_points.len() - 1);
}
println!(" - Tags: {:?}", tags);
}
let vertex_buffer = if treat_as_water_line {
if debug_way_id == Some(id) {
println!(" - Using generate_polygon_geometry for water line");
}
mesh_svc.generate_polygon_geometry(&projected_points)
} else {
if debug_way_id == Some(id) {
println!(" - Using generate_road_geometry with lanes={}, road_type={}", lanes, road_type);
}
mesh_svc.generate_road_geometry(&projected_points, lanes, road_type)
};
// DEBUG: Log buffer size
if way_count == 1 {
println!("DEBUG Way {}: vertex_buffer size = {} bytes", id, vertex_buffer.len());
// DEBUG: Log buffer size for tracked way
if debug_way_id == Some(id) {
println!(" - vertex_buffer size = {} bytes", vertex_buffer.len());
println!(" - Expected vertex size: {} bytes", if treat_as_water_line { 8 } else { 24 });
}
let task = DbTask::Way {
@@ -358,27 +421,58 @@ async fn main() -> Result<()> {
}
if treat_as_water_area {
// Generate water polygon mesh
let projected_points: Vec<[f32; 2]> = final_points.iter()
.map(|(lat, lon)| {
let (x, y) = GeometryService::project(*lat, *lon);
[x, y]
})
.collect();
// Calculate bounding box for multi-tile insertion
let mut min_lat = f64::MAX;
let mut max_lat = f64::MIN;
let mut min_lon = f64::MAX;
let mut max_lon = f64::MIN;
let vertex_buffer = mesh_svc.generate_polygon_geometry(&projected_points);
for (lat, lon) in &final_points {
if *lat < min_lat { min_lat = *lat; }
if *lat > max_lat { max_lat = *lat; }
if *lon < min_lon { min_lon = *lon; }
if *lon > max_lon { max_lon = *lon; }
}
let task = DbTask::Way {
zoom: zoom_i32,
table: "water",
id,
tags: tags.clone(),
points: polygon_blob.clone(),
vertex_buffer,
x,
y
};
let _ = tx.blocking_send(task);
// Get tiles covered by bounding box
let (min_tile_x, min_tile_y) = TileService::lat_lon_to_tile(min_lat, min_lon, zoom);
let (max_tile_x, max_tile_y) = TileService::lat_lon_to_tile(max_lat, max_lon, zoom);
// Iterate over all tiles in bbox
for tile_x in min_tile_x..=max_tile_x {
for tile_y in min_tile_y..=max_tile_y {
// Calculate tile origin and scale for relative coordinates
let tile_count = 2_f64.powi(zoom as i32);
let tile_size = 1.0 / tile_count;
let tile_origin_x = tile_x as f64 * tile_size;
let tile_origin_y = tile_y as f64 * tile_size;
// Project points to global space then make relative to this tile
let projected_points: Vec<[f32; 2]> = final_points.iter()
.map(|(lat, lon)| {
let (global_x, global_y) = GeometryService::project(*lat, *lon);
// Convert to tile-relative (0..1 within tile)
let relative_x = ((global_x as f64 - tile_origin_x) / tile_size) as f32;
let relative_y = ((global_y as f64 - tile_origin_y) / tile_size) as f32;
[relative_x, relative_y]
})
.collect();
let vertex_buffer = mesh_svc.generate_polygon_geometry(&projected_points);
let task = DbTask::Way {
zoom: zoom_i32,
table: "water",
id,
tags: tags.clone(),
points: polygon_blob.clone(),
vertex_buffer,
x: tile_x,
y: tile_y,
};
let _ = tx.blocking_send(task);
}
}
}
if treat_as_landuse {
@@ -434,8 +528,11 @@ async fn main() -> Result<()> {
if let Some(line_ref) = tags.get("ref") {
// Only propagate S-Bahn/U-Bahn style refs (starts with S or U followed by digit)
if (line_ref.starts_with('S') || line_ref.starts_with('U')) && line_ref.len() >= 2 {
let member_count = rel.members().filter(|m| matches!(m.member_type, osmpbf::RelMemberType::Way)).count();
println!("DEBUG: Found transit line ref '{}' with {} way members", line_ref, member_count);
// Only log if verbose debugging is enabled
if std::env::var("VERBOSE_DEBUG").is_ok() {
let member_count = rel.members().filter(|m| matches!(m.member_type, osmpbf::RelMemberType::Way)).count();
println!("DEBUG: Found transit line ref '{}' with {} way members", line_ref, member_count);
}
for member in rel.members() {
if let osmpbf::RelMemberType::Way = member.member_type {
railway_store.set_ref(member.member_id, line_ref.clone());
@@ -497,27 +594,81 @@ async fn main() -> Result<()> {
let table = if is_water { "water" } else { "landuse" };
// Generate polygon mesh for multipolygons
let projected_points: Vec<[f32; 2]> = final_points.iter()
.map(|(lat, lon)| {
let (x, y) = GeometryService::project(*lat, *lon);
[x, y]
})
.collect();
let vertex_buffer = mesh_svc.generate_polygon_geometry(&projected_points);
let task = DbTask::Way {
zoom: zoom_i32,
table,
id,
tags: tags.clone(),
points: polygon_blob.clone(),
vertex_buffer,
x,
y
};
let _ = tx.blocking_send(task);
// For water, use multi-tile insertion with tile-relative coords
if is_water {
// Calculate bounding box
let mut min_lat = f64::MAX;
let mut max_lat = f64::MIN;
let mut min_lon = f64::MAX;
let mut max_lon = f64::MIN;
for (lat, lon) in &final_points {
if *lat < min_lat { min_lat = *lat; }
if *lat > max_lat { max_lat = *lat; }
if *lon < min_lon { min_lon = *lon; }
if *lon > max_lon { max_lon = *lon; }
}
let (min_tile_x, min_tile_y) = TileService::lat_lon_to_tile(min_lat, min_lon, zoom);
let (max_tile_x, max_tile_y) = TileService::lat_lon_to_tile(max_lat, max_lon, zoom);
// Iterate over all tiles
for tile_x in min_tile_x..=max_tile_x {
for tile_y in min_tile_y..=max_tile_y {
let tile_count = 2_f64.powi(zoom as i32);
let tile_size = 1.0 / tile_count;
let tile_origin_x = tile_x as f64 * tile_size;
let tile_origin_y = tile_y as f64 * tile_size;
let projected_points: Vec<[f32; 2]> = final_points.iter()
.map(|(lat, lon)| {
let (global_x, global_y) = GeometryService::project(*lat, *lon);
let relative_x = ((global_x as f64 - tile_origin_x) / tile_size) as f32;
let relative_y = ((global_y as f64 - tile_origin_y) / tile_size) as f32;
[relative_x, relative_y]
})
.collect();
let vertex_buffer = mesh_svc.generate_polygon_geometry(&projected_points);
let task = DbTask::Way {
zoom: zoom_i32,
table,
id,
tags: tags.clone(),
points: polygon_blob.clone(),
vertex_buffer,
x: tile_x,
y: tile_y,
};
let _ = tx.blocking_send(task);
}
}
} else {
// Landuse: keep old single-tile logic for now
let (x, y) = TileService::lat_lon_to_tile(first_lat, first_lon, zoom);
let projected_points: Vec<[f32; 2]> = final_points.iter()
.map(|(lat, lon)| {
let (x, y) = GeometryService::project(*lat, *lon);
[x, y]
})
.collect();
let vertex_buffer = mesh_svc.generate_polygon_geometry(&projected_points);
let task = DbTask::Way {
zoom: zoom_i32,
table,
id,
tags: tags.clone(),
points: polygon_blob.clone(),
vertex_buffer,
x,
y,
};
let _ = tx.blocking_send(task);
}
}
}
}