167 lines
6.0 KiB
Python
167 lines
6.0 KiB
Python
"""
|
|
ChromaDB Client for storing and retrieving document embeddings
|
|
"""
|
|
import chromadb
|
|
from chromadb.config import Settings
|
|
from chromadb.utils import embedding_functions
|
|
import logging
|
|
import os
|
|
import time
|
|
|
|
class ChromaClient:
|
|
"""
|
|
Client for interacting with ChromaDB vector database.
|
|
Uses Ollama for generating embeddings if available, otherwise falls back to default.
|
|
"""
|
|
|
|
def __init__(self, host, port, collection_name='munich_news_articles', ollama_base_url=None):
|
|
"""
|
|
Initialize ChromaDB client
|
|
|
|
Args:
|
|
host: ChromaDB host (e.g. 'localhost' or 'chromadb')
|
|
port: ChromaDB port (default 8000)
|
|
collection_name: Name of the collection to use
|
|
ollama_base_url: Optional URL for Ollama embedding function
|
|
"""
|
|
self.host = host
|
|
self.port = port
|
|
self.collection_name = collection_name
|
|
self.client = None
|
|
self.collection = None
|
|
|
|
# Setup embedding function
|
|
# We prefer using a local embedding model compatible with Ollama or SentenceTransformers
|
|
# For simplicity in this stack, we can use the default SentenceTransformer (all-MiniLM-L6-v2)
|
|
# which is downloaded automatically by chromadb utils.
|
|
# Alternatively, we could define a custom function using Ollama's /api/embeddings
|
|
self.embedding_function = embedding_functions.DefaultEmbeddingFunction()
|
|
|
|
def connect(self):
|
|
"""Establish connection to ChromaDB"""
|
|
try:
|
|
self.client = chromadb.HttpClient(
|
|
host=self.host,
|
|
port=self.port,
|
|
settings=Settings(allow_reset=True, anonymized_telemetry=False)
|
|
)
|
|
|
|
# Create or get collection
|
|
self.collection = self.client.get_or_create_collection(
|
|
name=self.collection_name,
|
|
embedding_function=self.embedding_function,
|
|
metadata={"hnsw:space": "cosine"}
|
|
)
|
|
print(f"✓ Connected to ChromaDB at {self.host}:{self.port}")
|
|
return True
|
|
except Exception as e:
|
|
print(f"⚠ Could not connect to ChromaDB: {e}")
|
|
return False
|
|
|
|
def add_articles(self, articles):
|
|
"""
|
|
Add articles to the vector database
|
|
|
|
Args:
|
|
articles: List of dictionaries containing article data.
|
|
Must have 'link' (used as ID), 'title', 'content', etc.
|
|
"""
|
|
if not self.client or not self.collection:
|
|
if not self.connect():
|
|
return False
|
|
|
|
if not articles:
|
|
return True
|
|
|
|
ids = []
|
|
documents = []
|
|
metadatas = []
|
|
|
|
for article in articles:
|
|
# Skip if critical data missing
|
|
if not article.get('link') or not article.get('content'):
|
|
continue
|
|
|
|
# Use link as unique ID
|
|
article_id = article.get('link')
|
|
|
|
# Prepare text for embedding (Title + Summary + Start of Content)
|
|
# This gives semantic search a good overview
|
|
# Use English title if available, otherwise original
|
|
title = article.get('title_en') if article.get('title_en') else article.get('title', '')
|
|
summary = article.get('summary') or ''
|
|
content_snippet = article.get('content', '')[:1000]
|
|
|
|
text_to_embed = f"{title}\n\n{summary}\n\n{content_snippet}"
|
|
|
|
# robust metadata (flat dict, no nested objects)
|
|
metadata = {
|
|
"title": title[:100], # Truncate for metadata limits
|
|
"url": article_id,
|
|
"source": article.get('source', 'unknown'),
|
|
"category": article.get('category', 'general'),
|
|
"published_at": str(article.get('published_at', '')),
|
|
"mongo_id": str(article.get('_id', ''))
|
|
}
|
|
|
|
ids.append(article_id)
|
|
documents.append(text_to_embed)
|
|
metadatas.append(metadata)
|
|
|
|
if not ids:
|
|
return True
|
|
|
|
try:
|
|
self.collection.upsert(
|
|
ids=ids,
|
|
documents=documents,
|
|
metadatas=metadatas
|
|
)
|
|
print(f"✓ Indexed {len(ids)} articles in ChromaDB")
|
|
return True
|
|
except Exception as e:
|
|
print(f"✗ Failed to index in ChromaDB: {e}")
|
|
return False
|
|
|
|
def search(self, query_text, n_results=5, where=None):
|
|
"""
|
|
Search for relevant articles
|
|
|
|
Args:
|
|
query_text: The search query
|
|
n_results: Number of results to return
|
|
where: Metadata filter dict (e.g. {"category": "sports"})
|
|
"""
|
|
if not self.client or not self.collection:
|
|
if not self.connect():
|
|
return []
|
|
|
|
try:
|
|
results = self.collection.query(
|
|
query_texts=[query_text],
|
|
n_results=n_results,
|
|
where=where
|
|
)
|
|
|
|
# Format results into a nice list of dicts
|
|
formatted_results = []
|
|
if results and results['ids']:
|
|
for i, id in enumerate(results['ids'][0]):
|
|
item = {
|
|
'id': id,
|
|
'document': results['documents'][0][i] if results['documents'] else None,
|
|
'metadata': results['metadatas'][0][i] if results['metadatas'] else {},
|
|
'distance': results['distances'][0][i] if results['distances'] else 0
|
|
}
|
|
formatted_results.append(item)
|
|
|
|
return formatted_results
|
|
except Exception as e:
|
|
print(f"✗ Search failed: {e}")
|
|
return []
|
|
|
|
if __name__ == "__main__":
|
|
# Test client
|
|
client = ChromaClient(host='localhost', port=8000)
|
|
client.connect()
|