# Ollama Integration Complete ✅ ## What Was Added 1. **Ollama Service in Docker Compose** - Runs Ollama server on port 11434 - Persists models in `ollama_data` volume - Health check ensures service is ready 2. **Automatic Model Download** - `ollama-setup` service automatically pulls `phi3:latest` (2.2GB) - Runs once on first startup - Model is cached in volume for future use 3. **Configuration Files** - `docs/OLLAMA_SETUP.md` - Comprehensive setup guide - `configure-ollama.sh` - Helper script to switch between Docker/external Ollama - Updated `README.md` with Ollama setup instructions 4. **Environment Configuration** - Updated `backend/.env` to use `http://ollama:11434` (internal Docker network) - All services can now communicate with Ollama via Docker network ## Current Status ✅ Ollama service running and healthy ✅ phi3:latest model downloaded (2.2GB) ✅ Translation feature working with integrated Ollama ✅ Summarization feature working with integrated Ollama ## Quick Start ```bash # Start all services (including Ollama) docker-compose up -d # Wait for model download (first time only, ~2-5 minutes) docker-compose logs -f ollama-setup # Verify Ollama is ready docker-compose exec ollama ollama list # Test the system docker-compose exec crawler python crawler_service.py 1 ``` ## Switching Between Docker and External Ollama ```bash # Use integrated Docker Ollama (recommended) ./configure-ollama.sh # Select option 1 # Use external Ollama server ./configure-ollama.sh # Select option 2 ``` ## Performance Notes - First request: ~6 seconds (model loading) - Subsequent requests: 0.5-2 seconds (cached) - Translation: 0.5-6 seconds per title - Summarization: 5-90 seconds per article (depends on length) ## Resource Requirements - RAM: 4GB minimum for phi3:latest - Disk: 2.2GB for model storage - CPU: Works on CPU, GPU optional ## Alternative Models To use a different model: 1. Update `OLLAMA_MODEL` in `backend/.env` 2. Pull the model: ```bash docker-compose exec ollama ollama pull ``` Popular alternatives: - `gemma2:2b` - Smaller, faster (1.6GB) - `llama3.2:latest` - Larger, more capable (2GB) - `mistral:latest` - Good balance (4.1GB)