""" Ollama client for AI-powered article summarization """ import requests import time from datetime import datetime class OllamaClient: """Client for communicating with Ollama server for text summarization""" def __init__(self, base_url, model, api_key=None, enabled=True, timeout=30): """ Initialize Ollama client Args: base_url: Ollama server URL (e.g., http://localhost:11434) model: Model name to use (e.g., phi3:latest) api_key: Optional API key for authentication enabled: Whether Ollama is enabled timeout: Request timeout in seconds (default 30) """ self.base_url = base_url.rstrip('/') self.model = model self.api_key = api_key self.enabled = enabled self.timeout = timeout def _chat_request(self, messages, options=None): """ Helper to make chat requests to Ollama Args: messages: List of message dicts [{'role': 'user', 'content': '...'}] options: Optional dict of model parameters Returns: str: Generated text content """ if options is None: options = {} url = f"{self.base_url}/api/chat" headers = {'Content-Type': 'application/json'} if self.api_key: headers['Authorization'] = f'Bearer {self.api_key}' payload = { 'model': self.model, 'messages': messages, 'stream': False, 'options': options } response = requests.post( url, json=payload, headers=headers, timeout=self.timeout ) response.raise_for_status() result = response.json() return result.get('message', {}).get('content', '').strip() def summarize_article(self, content, max_words=150): """ Summarize article content using Ollama Args: content: Full article text max_words: Maximum words in summary (default 150) Returns: { 'summary': str, # AI-generated summary 'summary_word_count': int, # Summary word count 'original_word_count': int, # Original article word count 'success': bool, # Whether summarization succeeded 'error': str or None, # Error message if failed 'duration': float # Time taken in seconds } """ if not self.enabled: return { 'summary': None, 'summary_word_count': 0, 'original_word_count': 0, 'success': False, 'error': 'Ollama is not enabled', 'duration': 0 } if not content or len(content.strip()) == 0: return { 'summary': None, 'summary_word_count': 0, 'original_word_count': 0, 'success': False, 'error': 'Content is empty', 'duration': 0 } # Calculate original word count original_word_count = len(content.split()) start_time = time.time() try: # Construct messages for chat API messages = [ { 'role': 'system', 'content': f"You are a skilled journalist writing for The New York Times. Summarize the provided article in English in {max_words} words or less.\\n\\nWrite in the clear, engaging, and authoritative style of New York Times Magazine:\\n- Lead with the most newsworthy information\\n- Use active voice and vivid language\\n- Make it accessible and easy to read\\n- Focus on what matters to readers\\n- Even if the source is in German or another language, write your summary entirely in English\\n\\nIMPORTANT: Write in plain text only. Do NOT use markdown formatting (no ##, **, *, bullets, etc.). Just write natural prose." }, { 'role': 'user', 'content': f"Summarize this article:\\n\\n{content}" } ] # Make request using chat endpoint summary = self._chat_request( messages, options={ 'temperature': 0.5, 'num_predict': 350 } ) if not summary: return { 'summary': None, 'summary_word_count': 0, 'original_word_count': original_word_count, 'success': False, 'error': 'Ollama returned empty summary', 'duration': time.time() - start_time } # Clean markdown formatting from summary summary = self._clean_markdown(summary) summary_word_count = len(summary.split()) return { 'summary': summary, 'summary_word_count': summary_word_count, 'original_word_count': original_word_count, 'success': True, 'error': None, 'duration': time.time() - start_time } except requests.exceptions.Timeout: return { 'summary': None, 'summary_word_count': 0, 'original_word_count': original_word_count, 'success': False, 'error': f'Request timed out after {self.timeout} seconds', 'duration': time.time() - start_time } except requests.exceptions.ConnectionError: return { 'summary': None, 'summary_word_count': 0, 'original_word_count': original_word_count, 'success': False, 'error': f'Cannot connect to Ollama server at {self.base_url}', 'duration': time.time() - start_time } except requests.exceptions.HTTPError as e: return { 'summary': None, 'summary_word_count': 0, 'original_word_count': original_word_count, 'success': False, 'error': f'HTTP error: {e.response.status_code} - {e.response.text[:100]}', 'duration': time.time() - start_time } except Exception as e: return { 'summary': None, 'summary_word_count': 0, 'original_word_count': original_word_count, 'success': False, 'error': f'Unexpected error: {str(e)}', 'duration': time.time() - start_time } def translate_title(self, title, target_language='English'): """ Translate article title to target language Args: title: Original title (typically German) target_language: Target language (default: 'English') Returns: { 'success': bool, # Whether translation succeeded 'translated_title': str or None, # Translated title 'error': str or None, # Error message if failed 'duration': float # Time taken in seconds } """ if not self.enabled: return { 'success': False, 'translated_title': None, 'error': 'Ollama is not enabled', 'duration': 0 } if not title or len(title.strip()) == 0: return { 'success': False, 'translated_title': None, 'error': 'Title is empty', 'duration': 0 } start_time = time.time() try: # Construct messages for chat API messages = [ { 'role': 'system', 'content': f"You are a professional translator. Translate the following German news headline to {target_language}.\\n\\nIMPORTANT: Provide ONLY the {target_language} translation. Do not include explanations, quotes, or any other text. Just the translated headline." }, { 'role': 'user', 'content': title } ] # Make request using chat endpoint translated_title = self._chat_request( messages, options={ 'temperature': 0.1, # Low temperature for consistent translations 'num_predict': 100 # Limit response length } ) if not translated_title: return { 'success': False, 'translated_title': None, 'error': 'Ollama returned empty translation', 'duration': time.time() - start_time } # Clean the translation output translated_title = self._clean_translation(translated_title) # Validate translation (if it's same as original, it might have failed) if translated_title.lower() == title.lower() and target_language == 'English': # Retry with more forceful prompt messages[0]['content'] += " If the text is already English, just output it as is." translated_title = self._chat_request(messages, options={'temperature': 0.1}) translated_title = self._clean_translation(translated_title) return { 'success': True, 'translated_title': translated_title, 'error': None, 'duration': time.time() - start_time } except requests.exceptions.Timeout: return { 'success': False, 'translated_title': None, 'error': f'Request timed out after {self.timeout} seconds', 'duration': time.time() - start_time } except requests.exceptions.ConnectionError: return { 'success': False, 'translated_title': None, 'error': f'Cannot connect to Ollama server at {self.base_url}', 'duration': time.time() - start_time } except requests.exceptions.HTTPError as e: return { 'success': False, 'translated_title': None, 'error': f'HTTP error: {e.response.status_code} - {e.response.text[:100]}', 'duration': time.time() - start_time } except Exception as e: return { 'success': False, 'translated_title': None, 'error': f'Unexpected error: {str(e)}', 'duration': time.time() - start_time } def _clean_translation(self, translation): """Clean translation output by removing quotes and extra text""" # Extract first line only translation = translation.split('\n')[0] # Remove surrounding quotes (single and double) translation = translation.strip() if (translation.startswith('"') and translation.endswith('"')) or \ (translation.startswith("'") and translation.endswith("'")): translation = translation[1:-1] # Trim whitespace again after quote removal translation = translation.strip() return translation def _clean_markdown(self, text): """Remove markdown formatting from text""" import re # Remove markdown headers (##, ###, etc.) text = re.sub(r'^#{1,6}\s+', '', text, flags=re.MULTILINE) # Remove bold/italic markers (**text**, *text*, __text__, _text_) text = re.sub(r'\*\*([^\*]+)\*\*', r'\1', text) text = re.sub(r'__([^_]+)__', r'\1', text) text = re.sub(r'\*([^\*]+)\*', r'\1', text) text = re.sub(r'_([^_]+)_', r'\1', text) # Remove markdown links [text](url) -> text text = re.sub(r'\[([^\]]+)\]\([^\)]+\)', r'\1', text) # Remove inline code `text` text = re.sub(r'`([^`]+)`', r'\1', text) # Remove bullet points and list markers text = re.sub(r'^\s*[-*+]\s+', '', text, flags=re.MULTILINE) text = re.sub(r'^\s*\d+\.\s+', '', text, flags=re.MULTILINE) # Clean up extra whitespace text = re.sub(r'\n\s*\n', '\n\n', text) text = text.strip() return text def is_available(self): """ Check if Ollama server is reachable Returns: bool: True if server is reachable, False otherwise """ if not self.enabled: return False try: url = f"{self.base_url}/api/tags" headers = {} if self.api_key: headers['Authorization'] = f'Bearer {self.api_key}' response = requests.get(url, headers=headers, timeout=5) response.raise_for_status() return True except: return False def test_connection(self): """ Test connection and return server info Returns: { 'available': bool, 'models': list, 'current_model': str, 'error': str or None } """ if not self.enabled: return { 'available': False, 'models': [], 'current_model': self.model, 'error': 'Ollama is not enabled' } try: url = f"{self.base_url}/api/tags" headers = {} if self.api_key: headers['Authorization'] = f'Bearer {self.api_key}' response = requests.get(url, headers=headers, timeout=5) response.raise_for_status() result = response.json() models = [m.get('name', '') for m in result.get('models', [])] return { 'available': True, 'models': models, 'current_model': self.model, 'error': None } except requests.exceptions.ConnectionError: return { 'available': False, 'models': [], 'current_model': self.model, 'error': f'Cannot connect to Ollama server at {self.base_url}' } except Exception as e: return { 'available': False, 'models': [], 'current_model': self.model, 'error': str(e) } def generate(self, prompt, max_tokens=100): """ Generate text using Ollama Args: prompt: Text prompt max_tokens: Maximum tokens to generate Returns: { 'text': str, # Generated text 'success': bool, # Whether generation succeeded 'error': str or None, # Error message if failed 'duration': float # Time taken in seconds } """ if not self.enabled: return { 'text': '', 'success': False, 'error': 'Ollama is disabled', 'duration': 0 } start_time = time.time() try: messages = [{'role': 'user', 'content': prompt}] text = self._chat_request( messages, options={ "num_predict": max_tokens, "temperature": 0.1 } ) duration = time.time() - start_time return { 'text': text, 'success': True, 'error': None, 'duration': duration } except requests.exceptions.Timeout: return { 'text': '', 'success': False, 'error': f"Request timed out after {self.timeout}s", 'duration': time.time() - start_time } except Exception as e: return { 'text': '', 'success': False, 'error': str(e), 'duration': time.time() - start_time } def extract_keywords(self, title, summary, max_keywords=5): """ Extract keywords/topics from article for personalization Args: title: Article title summary: Article summary max_keywords: Maximum number of keywords to extract (default 5) Returns: { 'keywords': list, # List of extracted keywords 'success': bool, # Whether extraction succeeded 'error': str or None, # Error message if failed 'duration': float # Time taken in seconds } """ if not self.enabled: return { 'keywords': [], 'success': False, 'error': 'Ollama is disabled', 'duration': 0 } start_time = time.time() try: # Construct messages for chat API messages = [ { 'role': 'system', 'content': f"Extract {max_keywords} key topics or keywords from the article.\\n\\nReturn ONLY the keywords separated by commas, nothing else. Focus on:\\n- Main topics (e.g., 'Bayern Munich', 'Oktoberfest', 'City Council')\\n- Locations (e.g., 'Marienplatz', 'Airport')\\n- Events or themes (e.g., 'Transportation', 'Housing', 'Technology')" }, { 'role': 'user', 'content': f"Title: {title}\\nSummary: {summary}" } ] # Make request keywords_text = self._chat_request( messages, options={ 'temperature': 0.2, 'num_predict': 100 } ) if not keywords_text: return { 'keywords': [], 'success': False, 'error': 'Ollama returned empty response', 'duration': time.time() - start_time } # Parse keywords from response keywords = [k.strip() for k in keywords_text.split(',')] keywords = [k for k in keywords if k and len(k) > 2][:max_keywords] return { 'keywords': keywords, 'success': True, 'error': None, 'duration': time.time() - start_time } except requests.exceptions.Timeout: return { 'keywords': [], 'success': False, 'error': f"Request timed out after {self.timeout}s", 'duration': time.time() - start_time } except Exception as e: return { 'keywords': [], 'success': False, 'error': str(e), 'duration': time.time() - start_time } if __name__ == '__main__': # Quick test import os from dotenv import load_dotenv load_dotenv(dotenv_path='../.env') client = OllamaClient( base_url=os.getenv('OLLAMA_BASE_URL', 'http://localhost:11434'), model=os.getenv('OLLAMA_MODEL', 'phi3:latest'), enabled=True ) print("Testing Ollama connection...") result = client.test_connection() print(f"Available: {result['available']}") print(f"Models: {result['models']}") print(f"Current model: {result['current_model']}") if result['available']: print("\nTesting summarization...") test_content = """ The new U-Bahn line connecting Munich's city center with the airport opened today. Mayor Dieter Reiter attended the opening ceremony along with hundreds of residents. The line will significantly reduce travel time between the airport and downtown Munich. Construction took five years and cost approximately 2 billion euros. The new line includes 10 stations and runs every 10 minutes during peak hours. """ summary_result = client.summarize_article(test_content, max_words=50) print(f"Success: {summary_result['success']}") print(f"Summary: {summary_result['summary']}") print(f"Original word count: {summary_result['original_word_count']}") print(f"Summary word count: {summary_result['summary_word_count']}") print(f"Compression: {summary_result['original_word_count'] / max(summary_result['summary_word_count'], 1):.1f}x") print(f"Duration: {summary_result['duration']:.2f}s")