This commit is contained in:
2025-11-12 11:55:53 +01:00
parent 6773775f2a
commit d59372d1d6
8 changed files with 694 additions and 20 deletions

View File

@@ -15,6 +15,21 @@ OLLAMA_MODEL=phi3:latest
## ✅ How to Change the Model
### Important Note
**The model IS automatically checked and downloaded on startup**
The `ollama-setup` service runs on every `docker-compose up` and:
- Checks if the model specified in `.env` exists
- Downloads it if missing
- Skips download if already present
This means you can simply:
1. Change `OLLAMA_MODEL` in `.env`
2. Run `docker-compose up -d`
3. Wait for download (if needed)
4. Done!
### Step 1: Update .env File
Edit `backend/.env` and change the `OLLAMA_MODEL` value:
@@ -30,22 +45,38 @@ OLLAMA_MODEL=mistral:7b
OLLAMA_MODEL=your-custom-model:latest
```
### Step 2: Restart Services
The model will be automatically downloaded on startup:
### Step 2: Restart Services (Model Auto-Downloads)
**Option A: Simple restart (Recommended)**
```bash
# Stop services
docker-compose down
# Start services (model will be pulled automatically)
# Restart all services
docker-compose up -d
# Watch the download progress
# Watch the model check/download
docker-compose logs -f ollama-setup
```
**Note:** First startup with a new model takes 2-10 minutes depending on model size.
The `ollama-setup` service will:
- Check if the new model exists
- Download it if missing (2-10 minutes)
- Skip download if already present
**Option B: Manual pull (if you want control)**
```bash
# Pull the model manually first
./pull-ollama-model.sh
# Then restart
docker-compose restart crawler backend
```
**Option C: Full restart**
```bash
docker-compose down
docker-compose up -d
```
**Note:** Model download takes 2-10 minutes depending on model size.
## Supported Models
@@ -264,3 +295,68 @@ A: 5-10GB for small models, 50GB+ for large models. Plan accordingly.
- [OLLAMA_SETUP.md](OLLAMA_SETUP.md) - Ollama installation & configuration
- [GPU_SETUP.md](GPU_SETUP.md) - GPU acceleration setup
- [AI_NEWS_AGGREGATION.md](AI_NEWS_AGGREGATION.md) - AI features overview
## Complete Example: Changing from phi3 to llama3
```bash
# 1. Check current model
curl -s http://localhost:5001/api/ollama/models | python3 -m json.tool
# Shows: "current_model": "phi3:latest"
# 2. Update .env file
# Edit backend/.env and change:
# OLLAMA_MODEL=llama3:8b
# 3. Pull the new model
./pull-ollama-model.sh
# Or manually: docker-compose exec ollama ollama pull llama3:8b
# 4. Restart services
docker-compose restart crawler backend
# 5. Verify the change
curl -s http://localhost:5001/api/ollama/models | python3 -m json.tool
# Shows: "current_model": "llama3:8b"
# 6. Test performance
curl -s http://localhost:5001/api/ollama/test | python3 -m json.tool
# Should show improved quality with llama3
```
## Quick Reference
### Change Model Workflow
```bash
# 1. Edit .env
vim backend/.env # Change OLLAMA_MODEL
# 2. Pull model
./pull-ollama-model.sh
# 3. Restart
docker-compose restart crawler backend
# 4. Verify
curl http://localhost:5001/api/ollama/test
```
### Common Commands
```bash
# List downloaded models
docker-compose exec ollama ollama list
# Pull a specific model
docker-compose exec ollama ollama pull mistral:7b
# Remove a model
docker-compose exec ollama ollama rm phi3:latest
# Check current config
curl http://localhost:5001/api/ollama/config
# Test performance
curl http://localhost:5001/api/ollama/test
```

276
docs/CHECK_GPU_STATUS.md Normal file
View File

@@ -0,0 +1,276 @@
# How to Check GPU Status via API
## Quick Check
### 1. GPU Status
```bash
curl http://localhost:5001/api/ollama/gpu-status | python3 -m json.tool
```
**Response:**
```json
{
"status": "success",
"ollama_running": true,
"gpu_available": true,
"gpu_in_use": true,
"gpu_details": {
"model": "phi3:latest",
"gpu_layers": 32,
"size": 2300000000
},
"recommendation": "✓ GPU acceleration is active!"
}
```
### 2. Performance Test
```bash
curl http://localhost:5001/api/ollama/test | python3 -m json.tool
```
**Response:**
```json
{
"status": "success",
"duration_seconds": 3.2,
"performance": "Excellent (GPU likely active)",
"model": "phi3:latest",
"recommendation": "Performance is good"
}
```
### 3. List Models
```bash
curl http://localhost:5001/api/ollama/models | python3 -m json.tool
```
## Using the Check Script
We've created a convenient script:
```bash
./check-gpu-api.sh
```
**Output:**
```
==========================================
Ollama GPU Status Check
==========================================
1. GPU Status:
---
{
"status": "success",
"gpu_in_use": true,
...
}
2. Performance Test:
---
{
"duration_seconds": 3.2,
"performance": "Excellent (GPU likely active)"
}
3. Available Models:
---
{
"models": ["phi3:latest", "llama3:8b"]
}
==========================================
Quick Summary:
==========================================
GPU Status: GPU Active
Performance: 3.2s - Excellent (GPU likely active)
```
## API Endpoints
### GET /api/ollama/gpu-status
Check if GPU is being used by Ollama.
**Response Fields:**
- `gpu_available` - GPU hardware detected
- `gpu_in_use` - Ollama actively using GPU
- `gpu_details` - GPU configuration details
- `recommendation` - Setup suggestions
### GET /api/ollama/test
Test Ollama performance with a sample prompt.
**Response Fields:**
- `duration_seconds` - Time taken for test
- `performance` - Performance rating
- `recommendation` - Performance suggestions
### GET /api/ollama/models
List all available models.
**Response Fields:**
- `models` - Array of model names
- `current_model` - Active model from .env
### GET /api/ollama/ping
Test basic Ollama connectivity.
### GET /api/ollama/config
View current Ollama configuration.
## Interpreting Results
### GPU Status
**✅ GPU Active:**
```json
{
"gpu_in_use": true,
"gpu_available": true
}
```
- GPU acceleration is working
- Expect 5-10x faster processing
**❌ CPU Mode:**
```json
{
"gpu_in_use": false,
"gpu_available": false
}
```
- Running on CPU only
- Slower processing (15-30s per article)
### Performance Ratings
| Duration | Rating | Mode |
|----------|--------|------|
| < 5s | Excellent | GPU likely active |
| 5-15s | Good | GPU may be active |
| 15-30s | Fair | CPU mode |
| > 30s | Slow | CPU mode, GPU recommended |
## Troubleshooting
### GPU Not Detected
1. **Check if GPU compose is used:**
```bash
docker-compose ps
# Should show GPU configuration
```
2. **Verify NVIDIA runtime:**
```bash
docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi
```
3. **Check Ollama logs:**
```bash
docker-compose logs ollama | grep -i gpu
```
### Slow Performance
If performance test shows > 15s:
1. **Enable GPU acceleration:**
```bash
docker-compose down
docker-compose -f docker-compose.yml -f docker-compose.gpu.yml up -d
```
2. **Verify GPU is available:**
```bash
nvidia-smi
```
3. **Check model size:**
- Larger models = slower
- Try `phi3:latest` for fastest performance
### Connection Errors
If API returns connection errors:
1. **Check backend is running:**
```bash
docker-compose ps backend
```
2. **Check Ollama is running:**
```bash
docker-compose ps ollama
```
3. **Restart services:**
```bash
docker-compose restart backend ollama
```
## Monitoring in Production
### Automated Checks
Add to your monitoring:
```bash
# Check GPU status every 5 minutes
*/5 * * * * curl -s http://localhost:5001/api/ollama/gpu-status | \
python3 -c "import json,sys; data=json.load(sys.stdin); \
sys.exit(0 if data.get('gpu_in_use') else 1)"
```
### Performance Alerts
Alert if performance degrades:
```bash
# Alert if response time > 20s
DURATION=$(curl -s http://localhost:5001/api/ollama/test | \
python3 -c "import json,sys; print(json.load(sys.stdin).get('duration_seconds', 999))")
if (( $(echo "$DURATION > 20" | bc -l) )); then
echo "ALERT: Ollama performance degraded: ${DURATION}s"
fi
```
## Example: Full Health Check
```bash
#!/bin/bash
# health-check.sh
echo "Checking Ollama Health..."
# 1. GPU Status
GPU=$(curl -s http://localhost:5001/api/ollama/gpu-status | \
python3 -c "import json,sys; print('GPU' if json.load(sys.stdin).get('gpu_in_use') else 'CPU')")
# 2. Performance
PERF=$(curl -s http://localhost:5001/api/ollama/test | \
python3 -c "import json,sys; data=json.load(sys.stdin); print(f\"{data.get('duration_seconds')}s\")")
# 3. Models
MODELS=$(curl -s http://localhost:5001/api/ollama/models | \
python3 -c "import json,sys; print(len(json.load(sys.stdin).get('models', [])))")
echo "Mode: $GPU"
echo "Performance: $PERF"
echo "Models: $MODELS"
# Exit with error if CPU mode and slow
if [ "$GPU" = "CPU" ] && (( $(echo "$PERF > 20" | bc -l) )); then
echo "WARNING: Running in CPU mode with slow performance"
exit 1
fi
echo "✓ Health check passed"
```
## Related Documentation
- [GPU_SETUP.md](GPU_SETUP.md) - GPU setup guide
- [OLLAMA_SETUP.md](OLLAMA_SETUP.md) - Ollama configuration
- [CHANGING_AI_MODEL.md](CHANGING_AI_MODEL.md) - Model switching guide