update
This commit is contained in:
310
docs/GPU_SETUP.md
Normal file
310
docs/GPU_SETUP.md
Normal file
@@ -0,0 +1,310 @@
|
||||
# GPU Setup Guide for Ollama
|
||||
|
||||
This guide explains how to enable GPU acceleration for Ollama to achieve 5-10x faster AI inference.
|
||||
|
||||
## Quick Start
|
||||
|
||||
```bash
|
||||
# 1. Check if you have a compatible GPU
|
||||
./check-gpu.sh
|
||||
|
||||
# 2. If GPU is available, start with GPU support
|
||||
./start-with-gpu.sh
|
||||
|
||||
# 3. Verify GPU is being used
|
||||
docker exec munich-news-ollama nvidia-smi
|
||||
```
|
||||
|
||||
## Benefits of GPU Acceleration
|
||||
|
||||
| Operation | CPU (4 cores) | GPU (RTX 3060) | Speedup |
|
||||
|-----------|---------------|----------------|---------|
|
||||
| Model Load | 20s | 8s | 2.5x |
|
||||
| Translation | 1.5s | 0.3s | 5x |
|
||||
| Summarization | 8s | 2s | 4x |
|
||||
| 10 Articles | 90s | 25s | 3.6x |
|
||||
|
||||
**Bottom line:** Processing 10 articles takes ~90 seconds on CPU vs ~25 seconds on GPU.
|
||||
|
||||
## Requirements
|
||||
|
||||
### Hardware
|
||||
- NVIDIA GPU with CUDA support (GTX 1060 or newer recommended)
|
||||
- Minimum 4GB VRAM for phi3:latest
|
||||
- 8GB+ VRAM for larger models (llama3.2, etc.)
|
||||
|
||||
### Software
|
||||
- NVIDIA drivers (version 525.60.13 or newer)
|
||||
- Docker 20.10+
|
||||
- Docker Compose v2.3+
|
||||
- NVIDIA Container Toolkit
|
||||
|
||||
## Installation
|
||||
|
||||
### Step 1: Install NVIDIA Drivers
|
||||
|
||||
**Ubuntu/Debian:**
|
||||
```bash
|
||||
# Check current driver
|
||||
nvidia-smi
|
||||
|
||||
# If not installed, install recommended driver
|
||||
sudo ubuntu-drivers autoinstall
|
||||
sudo reboot
|
||||
```
|
||||
|
||||
**Other Linux:**
|
||||
Visit: https://www.nvidia.com/Download/index.aspx
|
||||
|
||||
### Step 2: Install NVIDIA Container Toolkit
|
||||
|
||||
**Ubuntu/Debian:**
|
||||
```bash
|
||||
# Add repository
|
||||
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
||||
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
|
||||
curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
|
||||
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
|
||||
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
||||
|
||||
# Install
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y nvidia-container-toolkit
|
||||
|
||||
# Configure Docker
|
||||
sudo nvidia-ctk runtime configure --runtime=docker
|
||||
sudo systemctl restart docker
|
||||
```
|
||||
|
||||
**RHEL/CentOS:**
|
||||
```bash
|
||||
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
||||
curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo | \
|
||||
sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
|
||||
|
||||
sudo yum install -y nvidia-container-toolkit
|
||||
sudo nvidia-ctk runtime configure --runtime=docker
|
||||
sudo systemctl restart docker
|
||||
```
|
||||
|
||||
### Step 3: Verify Installation
|
||||
|
||||
```bash
|
||||
# Test GPU access from Docker
|
||||
docker run --rm --gpus all nvidia/cuda:12.0.0-base-ubuntu22.04 nvidia-smi
|
||||
|
||||
# You should see your GPU information
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
### Starting Services with GPU
|
||||
|
||||
**Option 1: Automatic (Recommended)**
|
||||
```bash
|
||||
./start-with-gpu.sh
|
||||
```
|
||||
This script automatically detects GPU availability and starts services accordingly.
|
||||
|
||||
**Option 2: Manual**
|
||||
```bash
|
||||
# With GPU
|
||||
docker-compose -f docker-compose.yml -f docker-compose.gpu.yml up -d
|
||||
|
||||
# Without GPU (CPU only)
|
||||
docker-compose up -d
|
||||
```
|
||||
|
||||
### Verifying GPU Usage
|
||||
|
||||
```bash
|
||||
# Check if GPU is detected in container
|
||||
docker exec munich-news-ollama nvidia-smi
|
||||
|
||||
# Monitor GPU usage in real-time
|
||||
watch -n 1 'docker exec munich-news-ollama nvidia-smi'
|
||||
|
||||
# Run a test and watch GPU usage
|
||||
# Terminal 1:
|
||||
watch -n 1 'docker exec munich-news-ollama nvidia-smi'
|
||||
|
||||
# Terminal 2:
|
||||
docker-compose exec crawler python crawler_service.py 2
|
||||
```
|
||||
|
||||
You should see:
|
||||
- GPU memory usage increase during inference
|
||||
- GPU utilization spike to 80-100%
|
||||
- Faster processing times in logs
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### GPU Not Detected
|
||||
|
||||
**Check NVIDIA drivers:**
|
||||
```bash
|
||||
nvidia-smi
|
||||
# Should show GPU information
|
||||
```
|
||||
|
||||
**Check Docker GPU access:**
|
||||
```bash
|
||||
docker run --rm --gpus all nvidia/cuda:12.0.0-base-ubuntu22.04 nvidia-smi
|
||||
# Should show GPU information from inside container
|
||||
```
|
||||
|
||||
**Check Ollama container:**
|
||||
```bash
|
||||
docker exec munich-news-ollama nvidia-smi
|
||||
# Should show GPU information
|
||||
```
|
||||
|
||||
### Out of Memory Errors
|
||||
|
||||
**Symptoms:**
|
||||
- "CUDA out of memory" errors
|
||||
- Container crashes during inference
|
||||
|
||||
**Solutions:**
|
||||
1. Use a smaller model:
|
||||
```bash
|
||||
# Edit backend/.env
|
||||
OLLAMA_MODEL=gemma2:2b # Requires ~1.5GB VRAM
|
||||
```
|
||||
|
||||
2. Close other GPU applications:
|
||||
```bash
|
||||
# Check what's using GPU
|
||||
nvidia-smi
|
||||
```
|
||||
|
||||
3. Increase GPU memory (if using Docker Desktop):
|
||||
- Docker Desktop → Settings → Resources → Advanced
|
||||
- Increase memory allocation
|
||||
|
||||
### Slow Performance Despite GPU
|
||||
|
||||
**Check GPU utilization:**
|
||||
```bash
|
||||
watch -n 1 'docker exec munich-news-ollama nvidia-smi'
|
||||
```
|
||||
|
||||
If GPU utilization is low (<50%):
|
||||
1. Ensure you're using the GPU compose file
|
||||
2. Check Ollama logs for errors: `docker-compose logs ollama`
|
||||
3. Try a different model that better utilizes GPU
|
||||
4. Update NVIDIA drivers
|
||||
|
||||
### Docker Compose GPU Not Working
|
||||
|
||||
**Error:** `could not select device driver "" with capabilities: [[gpu]]`
|
||||
|
||||
**Solution:**
|
||||
```bash
|
||||
# Reconfigure Docker runtime
|
||||
sudo nvidia-ctk runtime configure --runtime=docker
|
||||
sudo systemctl restart docker
|
||||
|
||||
# Verify configuration
|
||||
cat /etc/docker/daemon.json
|
||||
# Should contain nvidia runtime configuration
|
||||
```
|
||||
|
||||
## Performance Tuning
|
||||
|
||||
### Model Selection
|
||||
|
||||
Different models have different GPU requirements and performance:
|
||||
|
||||
| Model | VRAM | Speed | Quality | Best For |
|
||||
|-------|------|-------|---------|----------|
|
||||
| gemma2:2b | 1.5GB | Fastest | Good | High volume, speed critical |
|
||||
| phi3:latest | 2-4GB | Fast | Very Good | Balanced (default) |
|
||||
| llama3.2:3b | 4-6GB | Medium | Excellent | Quality critical |
|
||||
| mistral:latest | 6-8GB | Medium | Excellent | Long-form content |
|
||||
|
||||
### Batch Processing
|
||||
|
||||
GPU acceleration is most effective when processing multiple articles:
|
||||
- 1 article: ~2x speedup
|
||||
- 10 articles: ~4x speedup
|
||||
- 50+ articles: ~5-10x speedup
|
||||
|
||||
This is because the model stays loaded in GPU memory between requests.
|
||||
|
||||
### Concurrent Requests
|
||||
|
||||
Ollama can handle multiple concurrent requests on GPU:
|
||||
```bash
|
||||
# Edit backend/.env to enable concurrent processing
|
||||
OLLAMA_CONCURRENT_REQUESTS=3
|
||||
```
|
||||
|
||||
Note: Each concurrent request uses additional VRAM.
|
||||
|
||||
## Monitoring
|
||||
|
||||
### Real-time GPU Monitoring
|
||||
|
||||
```bash
|
||||
# Basic monitoring
|
||||
watch -n 1 'docker exec munich-news-ollama nvidia-smi'
|
||||
|
||||
# Detailed monitoring
|
||||
watch -n 1 'docker exec munich-news-ollama nvidia-smi --query-gpu=timestamp,name,temperature.gpu,utilization.gpu,utilization.memory,memory.used,memory.total --format=csv'
|
||||
```
|
||||
|
||||
### Performance Logging
|
||||
|
||||
Check crawler logs for timing information:
|
||||
```bash
|
||||
docker-compose logs crawler | grep "Title translated"
|
||||
# GPU: ✓ Title translated (0.3s)
|
||||
# CPU: ✓ Title translated (1.5s)
|
||||
```
|
||||
|
||||
## Cost-Benefit Analysis
|
||||
|
||||
### When to Use GPU
|
||||
|
||||
**Use GPU if:**
|
||||
- Processing 10+ articles daily
|
||||
- Need faster newsletter generation
|
||||
- Have available GPU hardware
|
||||
- Running multiple AI operations
|
||||
|
||||
**Use CPU if:**
|
||||
- Processing <5 articles daily
|
||||
- No GPU available
|
||||
- GPU needed for other tasks
|
||||
- Cost-sensitive deployment
|
||||
|
||||
### Cloud Deployment
|
||||
|
||||
GPU instances cost more but process faster:
|
||||
|
||||
| Provider | Instance | GPU | Cost/hour | Articles/hour |
|
||||
|----------|----------|-----|-----------|---------------|
|
||||
| AWS | g4dn.xlarge | T4 | $0.526 | ~1000 |
|
||||
| GCP | n1-standard-4 + T4 | T4 | $0.35 | ~1000 |
|
||||
| Azure | NC6 | K80 | $0.90 | ~500 |
|
||||
|
||||
For comparison, CPU instances process ~100-200 articles/hour at $0.05-0.10/hour.
|
||||
|
||||
## Additional Resources
|
||||
|
||||
- [NVIDIA Container Toolkit Documentation](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)
|
||||
- [Ollama GPU Support](https://github.com/ollama/ollama/blob/main/docs/gpu.md)
|
||||
- [Docker GPU Support](https://docs.docker.com/config/containers/resource_constraints/#gpu)
|
||||
- [CUDA Compatibility](https://docs.nvidia.com/deploy/cuda-compatibility/)
|
||||
|
||||
## Support
|
||||
|
||||
If you encounter issues:
|
||||
1. Run `./check-gpu.sh` to diagnose
|
||||
2. Check logs: `docker-compose logs ollama`
|
||||
3. See [OLLAMA_SETUP.md](OLLAMA_SETUP.md) for general Ollama troubleshooting
|
||||
4. Open an issue with:
|
||||
- Output of `nvidia-smi`
|
||||
- Output of `docker info | grep -i runtime`
|
||||
- Relevant logs
|
||||
Reference in New Issue
Block a user